PT. RAVISHANKAR SHUKLA UNIVERSITY

RAIPUR - 492 010, CHHATTISGARH

CURRICULUM & SYLLABI (Based on CBCS & LOCF)

M.Sc. Environmental Science Semester System

Session: 2024-25 & onwards

Approved by:	Board of Studies	Academic Council
Date:		

Online Online

Prof. Prof. P. K Kamlesh. Behera K. Shrivas, (External Chairman member Prof. Kallol K. Ghosh (member) Prof. M. K. Deb (Member) Prof. Shamsh Pervez (Member)

10.05.2022

dubey (member) Daw 124

Gupta (Memebr) 10.5.24

To los 2024

DIONAL DIONAL

Online Online

1 Page

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member) Shri B. L. Yadaw (Member) Dr. Indrapal Karbhal (Member)

M.Sc. ENVIRONMENTAL SCIENCE COURSES

The Environmental Science is a multidisciplinary subject includes chemistry, physics, geology, geography & biology. The teaching and research in the environmental science is urgently required for understanding and controlling the complex environmental issues arising at the local, regional and global scales. It is the science of physical phenomena in the environment. It studies of the sources, reactions, transport, effect and fate of chemical and biological species in the air, water and soil, and their effect on human activities.

Program Outcome

Upon successful completion of the Master of Science in Environmental Science program, students will be able to:

PO-1	Knowledge: Demonstrate a deep understanding of advanced Environmental concepts, theories, and techniques in various subfields of Environmental Science. Will develop basic understanding about the subject and become aware of the progression made in realm of Environmental Science.
PO-2	Critical Thinking and Reasoning: Exhibit advanced critical thinking skills by analyzing and evaluating Environmental Science arguments, theories, and proofs, and by making reasoned judgments about Environmental Science concepts and their implications. Will have knowledge about importance and applications of the Environmental Science in the day to day and betterment of society.
PO-3	Problem Solving: Formulate abstract Environmental problems and derive solutions using rigorous logical reasoning. Demonstrate mastery in constructing Environmental Science proofs and justifications. Appreciate the ethical, cross-cultural, and historical context of environmental issues and the links between human and natural systems. Acquired the knowledge and skills needed for the environmental design and management.
PO-4	Advanced Analytical and Computational Skills: Possess advanced skills in
	Environmental data analysis and computation, including proficiency in using
	acquired skills in the preparation, planning and implementation of environmental projects.
PO-5	Effective Communication : Communicate complex Environmental ideas and results effectively to both technical and non-technical audiences, through written reports, presentations, and teaching. Environmental human communication is constitutive because it helps shape human understanding of environmental issues, themselves, and nature. Examples include values, attitudes, and ideologies regarding nature and environmental issues.
PO-6	Social/ Interdisciplinary Interaction: Integrate Environmental concepts and
	techniques into interdisciplinary contexts, collaborating effectively with
	professionals from other fields to address complex problems.

V. Share Online

Prof.

Kamlesh. K. Shrivas,

Chairman

Prof. P. K. Behera (External

Prof. Kallol K. Ghosh

Prof. M. K. Deb

Prof. Shamsh Pervez (Member)

dubey (member)

Dr. Ajita Dixt (Member)

Shri H.

Deshmukh

Shri B. L. Yadaw

Dr. Indrapal Karbhal

Online

Dr. Anand Kamavisdar (Member from DST) (Member)

2 | Page

Online

PO-7	Self-directed and Life-long Learning: Recognize the importance of ongoing professional development and lifelong learning in the rapidly evolving field of Environment, and will exhibit the ability to continue learning independently or in formal educational settings. Evaluate all the environmental factors considering with at all points such as technical, social, legal and economical aspect.
PO-8	Effective Citizenship: Leadership and Innovation: Lead and innovate in
	various Environmental contexts, contributing to advancements in the field and
	applying Environmental insights to emerging challenges. Basic understanding
	regarding this subject may possibly help them to opt environmental science,
	biodiversity, climate change, Environmental Impact Assessment etc., as a profession for their livelihood.
PO-9	
PO-9	Ethics : Demonstrate ethical and responsible conduct in research, teaching, and collaboration, adhering to professional standards and best practices.
	Encourages students to become more aware of the impacts they have on the
	environment and fosters an understanding of our planet.
PO-10	Further Education or Employment: Engage for further academic pursuits,
	including Ph.D. programs in environment or related fields. Get employment in
	academia, research institutions, industry, government, and other sectors.
PO-11	Global Perspective: Recognize the global nature of Environmental research
	and its impact, appreciating diverse cultural perspectives in Environmental
	practices.

3| Page Online

Online

V. Sharilas Online

Prof.

Prof. P. K. Kamlesh. K. Shrivas, Chairman Behera (External member

Ghosh (member)

Prof. Kallol K.

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Jul 2024 Parent 124 Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Hospital Stockon

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member)

Dr.

Dr. Anand Indrapal Karbhal (Member) Kamavisdar (Member from DST)

PROGRAMME SPECIFIC OUTCOME (PSOs): At the end of the program

the student will be able to:

PSO1	Understand the nature of abstract Environmental Science and explore the concepts in further
	details. Graduate has gained thorough understanding of Environmental Science as collated in the
	curriculum and developed the capability of self-learning to continue the search for knowledge
PSO2	Apply the knowledge of Environmental Science concepts in interdisciplinary fields and draw the
	inferences by finding appropriate solutions. Graduate has gained skills to apply the knowledge to
	the environmental challenges before the society of the nature of local, regional, or global
	dimensions aligned with the economy and sustainability.
PSO3	Graduate has gained research acumen and developed critical thinking to carry out research in the
	domain, and continue learning. Pursue research in challenging areas of pure/applied Environmental
	Science field.
PSO4	Employ confidently the knowledge of Environmental Science software such as Remote Sensing
	and GIS and tools for treating the complex Environmental problems related to Air, Water, Soil,
	Noise etc. and scientific investigations. Graduate has acquired the sense of responsibility to
	safeguard the environment as a constitutional duty.
PSO5	Effectively communicate and explore ideas of Environmental Science for propagation of
	knowledge and popularization of Environmental Science in society. Qualify national level tests like
	NET/SET/GATE etc.

M.Sc. ENVIRONMENTAL SCIENCE

Specification of Course	Semester	No. of Courses	Credits
Core	I-IV	22	95
Elective	II	02	05
Total		24	100
Additional Courses (Qualifying in nature, for	or Student admitted in Sci	hool	
of Studies only)			
Generic Elective	II-III	02	02
Skill Enhancement (Value Added Courses)	I, III	02	02

4| Page

Online

Prof.

Kamlesh. K. Shrivas, Chairman

Prof. P. K. Behera (External member

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt

(Member)

Shri H.

Deshmukh (Member)

Shri B. L. Yadaw (Member) Dr.

Online

Dr. Anand Indrapal Karbhal (Member) Kamavisdar (Member from DST)

M.Sc. Environmental Science STRUCTURE OF THE SYLLABUS

Course	Course	Course Tile	Credit	Hrs	T/	Evaluation							
Code	Nature		s	/W	P		Tota	l					
				eek									
A	В	С	D		E	CIA	ESE	TOTAL					
		Semester-I (YE	AR I)	l				·					
	T		T _	T _									
ENV101	CORE	Fundamental of Ecology	5	5	T	25	75	100					
ENV102	CORE	Renewable, Non-renewable and	5	5	T	25	75	100					
		Perpetual Resources			<u> </u>								
ENV103	CORE	Solid & Hazardous Waste Management	5	5	T	25	75	100					
ENV104	CORE	Instrumental Techniques & Analytical	5	5	T	25	75	100					
		methods in Environmental Science		10				100					
ENV105	CORE	Lab work-1	3	10	P	25	75	100					
ENV106	CORE	Lab work-2	2	10	P	25	75	100					
		Semester-II (YE	AR I)										
ENV201	CORE	Environmental Pollution and Control:	5	5	T	25	75	100					
EIN V 201	COKE	Air and Water	3	3	1	23	/3	100					
ENV202	CORE	Meteorology and Climatology	5	5	Т	25	75	100					
ENV203	CORE	Environmental Geoscience	5	5	T	25	75	100					
ENV204	FIRST	Water and Wastewater Treatment	5	5	T	25	75	100					
L111201	ELECTIV	Technologies			1		,.	100					
ENV205	E	Environmental Pollution and Control:	5	5	T	25	75	100					
2111200	Subject	Soil, Radiation and Noise						200					
	Elective	,											
	(Select any												
	one)												
ENV206	CORE	Lab work-3	2	10	P	25	75	100					
ENV207	CORE	Lab work-4	2	10	P	25	75	100					
		Semester-III (YE	AR II)		•	•							
ENW/201	CODE	T	T	T =		25		100					
ENV301	CORE	Environmental Toxicology	5	5	T	25	75	100					
ENV302	CORE	Environmental Microbiology	5	5	T	25	75	100					
ENV303	CORE	Data Analysis in Environmental	5	5	T	25	75	100					
ENIV204	CODE	Science	5		Tr.	25	75	100					
ENV304 ENV305**	CORE	Environmental Biotechnology		5	T P	25	75	100					
	CORE	Lab work-5 + Internship** (60 hours)	2+1*	10		25	75	100					
ENV306**	CORE	Lab work-6 + Internship ** (60 hours)	2+1*	10	P	25	75	100					
		Semester-IV (YE	AK II)										
ENV401	CORE	Environmental Impact assessment,	5	5	Т	25	75	100					
		Environmental Audit and											
		Environmental Management System											
		Standards (EIA, EA and EMSS)											

W. Share phline

member

Prof.

Kamlesh. K. Shrivas, Chairman

Prof. P. K. Behera (External

Prof. Kallol K. Ghosh (member)

Deb (Member)

Pervez (Member)

dubey (member)

(Member)

Online Online

5| Page

Prof. M. K. Prof. Shamsh Dr. Karuna Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member) Dr. Indrapal Karbhal (Member)

ENV402	CORE	Environmental Law, Policies and	5	5	T	25	75	100
		Society						
	CORE	Remote Sensing and GIS	5	5	T	25	75	100
ENV403								
ENV404	CORE	Environmental Disaster and Risk	5	5	T	25	75	100
ENV405	RESEARC	Research Project/Dissertation	5	10	P	50	50	100
	Н							
	PROJECT/							
	DISSERT							
	ATION							

** Student should select only one course for Internship (either in ENV305 or ENV306) for 60 hrs duration

Note:

- 1. In place of Elective Course Student can choose paper(s) from MOOC Courses (Swayam Portal) subject to the following conditions:
 - The chosen paper will be other than the papers offered in the current course structure.
 - b. The paper will be PG level with a minimum of 12 weeks' duration.
 - The list of courses on SWAYAM keeps changing, the departmental committee will finalize the list of MOOC courses for each semester.
 - d. The paper (s) may be chosen from Swayam Portal on the recommendation of Head of the Department.
- 2. The candidates who have joined the PG Programme in School of Studies (University Teaching Department), shall undergo Generic Elective Courses (only qualifying in nature) offered by other departments/SoS in Semester II and Semester III.
- 3. The candidates who have joined the PG Programme in School of Studies (University Teaching Department), shall undergo Skill Enhancement Course/Value Added Course (only qualifying in nature) in Semester I and Semester II.

Generic Elective Courses: (Offered to PG students of other Departments/SoS only)

Semester	Course Code	Course Title	Cours	Hrs/	Credi			
			e Type	Wee	ts	CIA	ESE	Total
			(T/P)	k				
II	ENV501	Research Methodology and Scientific Report for Environmental Science	Т	2	2	25	75	100
III	ENV502	Environmental Toxicology	T	2	2	25	75	100

Skill Enhancement/Value Added Courses: (Offered to the PG students of SoS in **Environmental Science**)

Semes	Course Code	Course Title	Course	Hrs/	Credi		Marks		
ter						ESE	Total		
			(T/P)						
I	ENV601	Agro-Forestry and Forest	T	2	2	25	75	100	
		Management							
III	ENV602	Indian Knowledge System	T	2	2	25	75	100	

Prof.

Kamlesh.

K. Shrivas,

Chairman

Prof. P. K. Behera (External

Prof. Kallol K. Ghosh

Prof. M. K. Deb

Prof. Shamsh

Online Online **6**| Page

Pervez (Member)

dubey (member)

Dr. Bhanushrre

Dr. Ajita Dixt (Member)

Shri H. Deshmukh Shri B. L. Yadaw

Indrapal Karbĥal (Member)

Programme Articulation Matrix:

Following matrix depicts the correlation between all the courses of the programme and **Programme Outcomes**

Course		011100				POs								PSO		
Code	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
ENV101	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV102	٧	٧	٧	٧	٧	٧	٧	٧	×	٧	٧	٧	٧	٧	٧	٧
ENV103	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	×	٧	٧	٧
ENV104	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV105	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV106	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV201	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV202	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV203	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV204	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV205	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV206	٧	٧	>	٧	>	7	>	>	×	٧	>	7	٧	٧	×	٧
ENV207	×	٧	×	٧	٧	٧	٧	٧	٧	×	٧	٧	٧	٧	٧	٧
ENV301	٧	٧	٧	٧	٧	٧	٧	٧	×	٧	٧	٧	٧	٧	×	٧
ENV302	٧	٧	٧	٧	×	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV303	٧	٧	>	٧	>	7	>	>	>	٧	>	7	٧	٧	>	٧
ENV304	٧	٧	٧	×	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	×	٧
ENV305	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	×	٧	٧
ENV306	٧	٧	٧	×	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV401	٧	٧	٧	×	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV402	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV403	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV404	×	٧	×	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ENV405	٧	٧	٧	٧	٧	٧	٧	٧	×	٧	٧	٧	٧	٧	×	٧
No. of courses mapping the PO/PSO	22	24	23	22	23	24	24	23	22	24	24	24	23	23	20	24

Online

Prof. P. K. Behera (External Chairman

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Online

Online

7 | Page

Prof. Kamlesh. K. Shrivas,

Prof. Kallol K. Ghosh (member)

Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member) Dr. Indrapal Karbhal (Member)

M.Sc. (Environmental Science) Semester-I

Program	Subject	Semester								
M.Sc.	Environmental Science									
Course Code	Course	Title	Course Type							
ENV101	FUNDAMENTAL	LS OF ECOLOGY CORE						FUNDAMENTALS OF ECOLOGY		
Credit	H	Iours Per Week (L-	-T-P)							
	L	T	P							
5	5	-	-							
Maximum Marks	CIA	ESE								
100	25		75							

Learning Objective (LO):

The course aims to equip students with a deep understanding of ecology and environment, and empower them to apply this knowledge to solve environmental problems and learn functional characteristics of ecosystems.

Course Outcomes (CO):

CO	Expected Course Outcomes	CL
No.	At the end of the course, the students will be able to:	
1	Understand the concept of Ecology and Environment. Explore the component parts of an ecosystem. Explain Bio-geo-chemical cycles: Carbon cycle, nitrogen cycle, sulfur cycle, phosphorous cycle and the Functional attributes of an Ecosystem.	U
2	Concept of Primary and Secondary production. Learners will be expected to learn the basic concepts of Enthalpy and Entropy, Energy flow in producers and consumers, Lindeman's Trophic-Dynamic concept, Ecological Efficiency and Energy Flow Model.	An
3	Understand the Population Attributes, Population Fluctuation and Population Interaction. Family planning method of birth control, Socio-economic methods of controlling human population growth	Ap
4	Understand the concept of Habitat and Niche, Community Organization, qualitative and quantitative attributes of Community. Understanding the Ecotone and Edge Effect, Ecological Succession and kind of Succession.	Е

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

Online

Prof. Kamlesh. Prof. P. K. Behera (External K. Shrivas. Chairman

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna

Dr. Bhanushrre Gupta (member) (Memebr)

8 | Page Online

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member) Dr. Indrapal Karbhal

CO-PO/PSO Mapping for the course:

P0		POs												PSO					
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5			
CO1	3	3	2	2	3	2	3	2	3	3	3	3	3	3	2	3			
CO2	3	3	2	1	2	2	3	3	3	3	3	3	2	2	2	3			
CO3	3	3	3	1	3	2	2	2	2	3	3	3	3	3	2	3			
CO4	3	3	2	2	2	3	3	2	3	2	2	3	2	2	2	3			

[&]quot;3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit	Topics	No. of	CO
No.		Lectures	No.
I	Concept of Ecology	20	1
	History and scope of ecology: autecology, synecology, population,		
	community, ecosystem, biome, tolerance range and limiting factors;		
	Component parts of an ecosystem; Classification of ecosystems; Ecological		
	factors: temperature, light, water; Bio-geo-chemical cycles: Carbon cycle,		
	nitrogen cycle, sulfur cycle, phosphorous cycle; Functional attributes of an		
	Ecosystem :Biological diversity and stability; Biodiversity: Index of		
	diversity and dominance, Biological indices, relationship between species		
	diversity, dominance and stability; Food chain: Trophic levels & ecological		
	pyramid concept; Types of food chain & significance of food chains,		
	pyramid of number, biomass & energy.		
II	Primary and Secondary Production and Ecosystem Energy Flow	19	2
	Concept of Primary Production; Factors affecting primary production;		
	Method for measuring primary production; Relationship between GPP &		
	NPP, atmospheric respiration, primary productivity of different world sites;		
	Secondary production: concept of secondary production and secondary		
	productivity, maintenance cost, production-assimilation efficiency and		
	secondary productivity; Relationship of secondary production to net		
	primary production, Energy flow in Ecosystems, Concept of Energy,		
	Energy source in Ecosystem, Laws governing energy transformation,		
	concept of free energy, Enthalpy and Entropy, Energy flow in producers and		
	consumers, Lindeman's Trophic-Dynamic concept, Ecological efficiencies,		
	Energy flow models.		
III	Population Attributes, Population Fluctuation and Population	20	3
	Interaction		
	Biotic potential and natality, mortality, survivorship curves, life table, age		
	structure, population growth forms, concept of carrying capacity and		
	environmental resistance; Life history strategies, r and k selection, extrinsic		
	A A A A A A A A A A A A A A A A A A A	- LA-	

Online

Prof. Kamlesh. K. Shrivas, Chairman Prof. P. K. Behera

(External

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre

Online

9 | Page Online

Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member) Indrapal Karbhal (Member)

	and intrinsic abiotic, biotic, density dependent and independent factors associated with population fluctuation; Population interaction like symbiosis, commensalism, parasitism, predation, competition etc.; Models for single and interacting population, social behavior in animals. Factors affecting change in size of human population: death rate and net population change, migration, fertility, age structure, Human population control; economic development and demography transition, family planning method		
13.7	of birth control, socio-economic methods of controlling human population growth.	17	4
IV	Biotic Community and Ecological Succession Concept of habitat and niche, types of niches: spatial, trophic and hyper volume niche; ecological equivalents, community organization, types of communities, community structure (analytical and synthetic), qualitative features of community (Composition, stratification, Physiognomy, dispersion, sociability, vitality, etc.), quantitative characteristics of community (frequency, density, cover dominance and diversity, important value index), Ecotone and edge effect. Ecological succession and kind of succession, succession process, concept of climax, monoclimax, and polyclimax theories, examples of succession (hydrosere, lithosere and xerosere) and vegetation of India. Theories behind Cave Adaptations of Animals, Cave Organisms identified from Chhattisgarh and their notable troglomorphism, Energy sources in caves, Prey-predator relationship in the cave, Role of bats inside and outside the caves.	16	4

Book & References

- 1. E. P. Odum, Fundamental of ecology, W.B Sounders, 1971.
- 2. M. Dash and S. Dash, Fundamentals of ecology, Mc Graw Hill Education, India, 2009.
- 3. R. T. Wright and B. J. Nebel, Environmental science: Toward A sustainable future, Prentice Hall, 2002.
- 4. P. Stiling, Ecology: Theories and Applications, Prentice Hall, 2001.
- 5. C. Faurie, Ecology: Science and Practice, Oxford & IBH, 2001.
- 6. G. T. Miller, Living in the environment: An introduction to environmental science, Wadsworth Publishers, 1998.
- 7. J. Turk, Introduction to Environmental Studies, Saunders, 1980.
- 8. E. J. Kormondy, Concepts of ecology, Prentice Hall, 1996.
- 9. M. M. Saxena, Applied Environmental Biology, Agrobios, 1990.
- 10. E. Odum and G. W. Barrett, Fundamentals of Ecology, Brooks Cole, 2004
- 11. J. B. Fraleigh, A first course in Algebra, Narosa, 1982.

10 | Page

Online

Online

Kamlesh K. Shrivas, Chairman

Prof. P. K. Behera (External

Prof. Kallol K. Ghosh (member)

Prof. M. K. (Member)

Prof. Shamsh (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre (Memebr)

Dr. Aiita Dixt

Shri H. Deshmukh (Member)

Shri B. L Yadav (Member)

Dr. Anand Indrapal Kamavisdar (Member Karbhal (Member) from DST)

Online

M.Sc. (Environmental Science) Semester-I

Program	Subject	Year	S	emester			
M.Sc.	Environmental Science	I		Ι			
Course Code	Course	Title	Cor	urse Type			
ENV102		RENEWABLE, NON-RENEWABLE ANI PERPETUAL RESOURCES (I)					
Credit	H	Iours Per Week (L	-T-P)				
	L	Т		P			
5	5	-		-			
Maximum Marks	CIA	E	ESE				
100	25		75				

Learning Objective (LO):

The course aims to equip students with a deep understanding of various energy resources (both renewable and non-renewable) and its responsible uses, harnessing technologies and future aspects of energy resources also another aim of these course is to explain students about the importance of wild flora and fauna and biodiversity conservation.

Course Outcomes (CO):

СО	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to :	
1	Forest- importance, forest cover loss with world and Indian context, management of forest, social, agro and extension forestry, Biodiversity- definition, types, distribution and importance of biodiversity, Biodiversity hot-spot and conservation of biodiversity.	U
2	Understanding and Critical thinking about endangered species of world flora and fauna, IUCN and its importance, importance of biodiversity and its future approach.	An
3	Fossil fuels: Classification, Coal, its type and its analysis, Carbonization Oil: fractionation, cracking Octane and octane number, addition of TEL. Environmental Impact of Fossil Fuel use.	Ap
4	Understanding the concept of Geothermal hydro solar wind bio mass and Nuclear Energy and its importance and developing critical thinking about energy conservation and responsible use.	Е

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

Q.hline

Kamlesh. K. Shrivas, Chairman

Prof. P. K. Behera (External

Prof. Kallol K. Ghosh (member)

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Aiita Dixt (Member)

Online Online

11 | Page

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member)

Indrapal Karbhal (Member)

CO-PO/PSO Mapping for the course:

	PO	POs PSO															
\	CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
	CO1	3	3	2	-	1	1	3	1	3	3	3	3	2	3	2	3
	CO2	3	3	2	1	1	1	3	1	3	3	3	3	2	2	2	3
	CO3	3	3	3	1	1	1	3	2	3	2	3	3	3	1	3	3
	CO4	3	3	2	1	1	2	3	2	3	2	3	3	2	2	3	3

[&]quot;3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit	Topics	No. of	СО
No.		Lectures	No.
I	Renewable Resources (forest) Importance of Forest with reference to major and minor produce, climate, soil erosion, pollution control and water management, Loss of forest cover with reference to world and Indian Context, Impact of deforestation and shifting cultivation on forest ecosystems, Management of forests involving different silvicultural principles and practices. Raising forest cover through social forestry, agroforestry and extension forestry, Eucalyptus dilemma ,Joint Forest management ,People's participation and role of NGOs, Concept of Biosphere Reserve , Biodiversity and forest : definition and type of biodiversity, global distribution of biodiversity, mega biodiversity countries, key stone species, dominant species, biodiversity hot spots, significance of biodiversity, factors influencing biodiversity loss, biodiversity conservation (in situ and ex situ).	20	1
II	Renewable Resources (Rangeland and Wildlife) Rangeland: Importance and extent of rangeland, causes of rangeland loss, conservation and management of rangeland, Wild Life resources: Wild life & its importance. Human activities and Wild Life, Concept of Endangered Species, IUCN classification and Red data Book, ecological basis of wild Life conservation and management, some case studies on crocodile, sea turtle and project tiger. Major threats to cave biodiversity and cave assets, Major measures to be taken before and after converting a wild cave to a show cave, Tourism Versus Conservation.	18	2
III	Non-renewable Mineral and Fossil Fuel Resources Mineral Resources: Economic mineral deposits, grouping of ores minerals, various steps involved in extraction processes of pure metals, uses of common metals and their recycling, Radioactive minerals, Environmental impact of	18	3

Prof. Kamlesh. K. Shrivas, Prof. P. K. Behera (External

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

12 | Page Online Online

Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member) Dr. Indrapal Karbhal

	mining and processing mineral resources, conservation of mineral resources.		
	Fossil fuels: Classification, Coal, its type and its analysis, Carbonization, oil:		
	fractionation, cracking Octane and octane number, addition of TEL; natural		
	gas and other gaseous fuels derived from fossil fuels, Environmental Impact		
	of Fossil Fuel use.		
IV	Perpetual & Nonrenewable and Perpetual and Renewable Energy	19	4
	Source		
	Geothermal energy: Source, Principle of harnessing energy and its operation. Nuclear Energy: Source, fission and fusion reactions, broad idea of nuclear reactor, its operations, management and electrical power generation, safety measures. Solar energy: its secret, devices based on solar energy, their advantages and drawbacks, wind energy: wind mills and applications, aerogenerators, their advantages and disadvantages, Water energy: Hydroelectricity, wave and tidal energy, tidal power plant, their advantages and drawbacks Energy from biomass: Biomass as fuel, Biogas plants and generation, uses of biogas.		

Reference Books:

- 1. F. Ramade, Ecology of natural resources, John Wiley & Sons, 1984.
- R. Toossi, Energy and the Environment: Sources, Technologies, and Impacts, VerVe 2. Publishers, 2008.
- 3. K. Singh, Handbook of Environment, Forest and Wildlife Protection Laws in India, Natraj,
- 4. S. S. Negi, India's Forests, Forestry and Wildlife, India Book House, 2006.
- C. A. Simon, Alternative Energy: Political, Economic, and Social Feasibility, Rowman & 5. Littlefield, Lanham, Maryland, 2006.
- 6. O. Edenhofer, Renewable Energy Sources and Climate Change Mitigation, Cambridge University Press, 2011.
- A.Karen, Environmental Science: Understanding Our Earth, Cengage Learning, 2011 7.
- 8. L. R. Berg and M. C. Hager, Visualizing Environmental Science, Second Edition, Wiley and National Geographic, 2009.
- 9. B. Judy and St. A. Sara, Environmental Science, Pearson – AGS Globe, 2007.

13| Page

Online

Online

Prof. P. K. Behera (External K. Shrivas.

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member)

Dr. Bhanushrre (Memebr)

Dr. Ajita Dixt

Shri H. Deshmukh (Member)

Shri B. L (Member)

Dr. Anand Kamavisdar Indrapal Karbhal (Member from DST)

Online

M.Sc. (Environmental Science) Semester-I

Program	Subject	Year		Semester			
M.Sc.	Environmental Science	I		I			
Course Code	Course	Title	Course				
ENV103	SOLID & HAZA MANAGE	RDOUS WASTE EMENT (I)	2	CORE			
Credit	H	Hours Per Week (L	-T-P)				
	L	Т		Р			
5	5	-		-			
Maximum Marks	CIA	CIA					
100	25	75					

Learning Objective (LO):

The course aims to equip students with a deep understanding of municipal solid waste, hazardous and radioactive waste its origin classification effects on living organisms (including flora and fauna) and develop critical thinking of how to overcome from the same.

Course Outcomes (CO):

CO	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to :	
1	Understanding about solid waste and its various types with reference to their impact	U
	on environmental and human health.	
2	Understanding and Critical thinking about utilization of solid waste with reference	An
	of energy and resource recovery through various technologies like composting and	
	vermicomposting etc. overall solid waste management techniques are completed.	
3	Understand various hazardous waste collection segregation and management	Ap
	techniques and analysis of the efficiency of hazardous waste management techniques	
	HWM rules and regulation.	
4	Understand the Classification, collection, segregation Treatment and disposal of	Е
	radioactive, bio medical and e waste and its management. 5R concept of e waste.	
	And its harmful effects on environment.	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

14| Page

Online

Prof. P. K. Behera (External K. Shrivas.

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Online

Shri H. Deshmukh (Member)

Shri B. L. (Member) Dr. Indrapal Karbhal

CO-PO/PSO Mapping for the course:

PO							PSO									
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	1	1	1	3	3	3	3	3	3	1	3	2	3
CO2	3	3	3	1	1	1	3	3	3	3	3	3	2	3	2	3
CO3	3	3	3	1	1	1	3	3	3	3	3	3	2	3	2	3
CO4	3	3	3	1	1	1	3	3	3	3	3	3	2	3	3	3

[&]quot;3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit	Topics	No. of	СО
No.		Lectures	No.
I	Solid Waste	18	1
	Definition of solid wastes – types of solid wastes – Sources - Industrial, mining,		
	agricultural, municipal solid waste, Construction demolition waste, E-waste		
	and Biomedical waste. Solid waste Problems - impact on environmental health		
II	Functional Elements of Solid Waste Management	20	2
	Handling and segregation of wastes at source. Collection and storage of		
	municipal solid wastes; analysis of Collection systems. Transfer stations. Solid		
	waste processing technologies: Mechanical and thermal volume reduction,		
	Biological and chemical techniques for energy and other resource recovery,		
	composting, vermicomposting, fermentation. Incineration of solid wastes.		
	Disposal in landfills: site selection, design, and operation of sanitary landfills;		
	Leachate and landfill gas management; landfill remediation. Regulatory		
	aspects of municipal solid waste management, Plastic waste management.		
III	Hazardous Waste and Management	19	3
	Hazardous waste definition. Physical and biological routes of transport of		
	hazardous substances – sources and characterization. Sampling and analysis of		
	hazardous wastes –proximate analysis – survey analysis – directed analysis -		
	handling, collection, storage and transport. Hazardous waste treatment		
	technologies: Physical, chemical and thermal treatment of hazardous waste:		
	solidification, chemical fixation, encapsulation, pyrolysis and incineration.		
	Hazardous waste landfills - Site selections, design and operation. HW		

Online Online

Prof. Kamlesh. K. Shrivas, (External

Prof. P. K. Behera

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr)

15| Page

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member)

Dr. Indrapal Karbhal

	reduction, recycling and reuse fly ash bricks, Regulatory aspects of HWM/HWM rules.		
IV	Biomedical, Radioactive and E-Waste Management	18	4
	Classification, collection, segregation Treatment and disposal. Radioactive waste: Definition, Low level and high level radioactive wastes and their management, Radiation standard by ICRP and AERB Waste characteristics, generation, collection, transport and disposal, regulatory aspects of e waste, Global strategy, recycling. Waste characteristics, generation, collection, transport and disposal, regulatory aspects of e waste, Global strategy, recycling.		

Reference Books:

- 1. Hazardous waste management Charles A. Wentz. Second edition 1995. McGraw Hill International.
- 2. Integrated solid waste management George Tchobanoglous, Hilary Theisen & Sammuel A. Vigil.
- 3. Criteria for hazardous waste landfills CPCB guidelines 2000.
- 4. Hazardous waste management by Prof. Anjaneyulu.
- 5. Environmental Sciences by Daniel B. Botkin and Edward A. Keller, Wiley student, 6th edition-2009.
- 6. Standard handbook of Hazardous waste treatment and disposal by Harry M. Freeman, McGraw Hill 1997.

Prof. P. K. Behera K. Shrivas. (External

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member)

Dr. Bhanushrre

(Memebr)

Dr. Ajita Dixt

16| Page

Shri H.

(Member)

Shri B. L. (Member)

Dr. Anand Kamavisdar Indrapal Karbhal (Member from DST)

M.Sc. (Environmental Science) Semester - I

Program	Subject	Year	Semester
M.Sc.	Environmental Science	I	1
Course code	Cours	e Title	Course Type
ENV104	TECHNI ANALYTICAL	MENTAL QUES & METHODS IN TAL SCIENCE	CORE
Credit		Hours Per Week	(L-T-P)
	L	T	P
5	5	-	-
Maximum Marks	C	IA	ESE
100	2	5	75

Learning Objective (LO):

The course aims to equip students with a deep understanding of advanced Instruments and it's technique and empower them to apply this knowledge to with higher-level research as well as in different industries like pharmaceutical, ore industries, cement industries etc.

Course Outcomes (CO):

СО	Expected Course Outcomes	CL
No.		CL
	At the end of the course, the students will be able to:	
1	Learner would be able explore and learn about Instrumentation, working principle and application of electrochemical techniques such as principle and application of pH-metery, potentiometery, conductometry, coulometry, polarography, Cyclic Voltametry, Anodic Voltametry, Amperometry and Ion selective Electrodes. Understanding and applying different separation technique of substances of different state of matter and types.	Ap
2	Student will learn about the principle, instrumentation and application of the infrared, FTIR, visible, ultraviolet and Raman and fluorescence spectrometry, Nephelometry and turbidimetry. Understand the complex process of chromatography and it's application	Ap
3	Student would understand the principle, instrumentation and application of atomic absorption (i.e. flame, graphite furnace, hydride generation and cold vapor) spectroscopy and atomic emission (i.e. flame, plasma, spark and arc) spectroscopy. Understand the method of mass spectroscopy and how spectra produced after EMR can be used in separation technique.	Ap
4	The pupil would understand the fundamental as well as the principle, instrumentation and application of X-ray fluorescence spectroscopy (XRF), proton induced X-ray emission spectroscopy (PIXE), <i>NMR</i> and ESR spectroscopy.	Ap

Qnline Qnline

Prof. Prof. P. K. Kamlesh. Behera K. Shrivas, (External

Prof. Kallol K. Ghosh (member) Prof. M. K. Deb (Member) Prof. Shamsh Pervez (Member) Dr. Karuna

dubey (member) 10/5/24

Dr. Bhanushrre

(Memebr)

1 10 5 24 E

10 05 2024

1000 XV

Online Onlin

17| Page

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member) Shri B. L. Yadaw (Member)

Dr. Indrapal Karbhal (Member)

Understand the other available methods of separation like gravimetric, volumetric etc. and its analytical science.

CL: Cognitive Levels (**R**-Remember; **U**-Understanding; **Ap**-Apply; **An**-Analyze; **E**-Evaluate; **C**-Create).

CO-PO/PSO Mapping for the course:

00 2 07	CO I O/I DO I/IUPPING IOI UNO COUIDOU																
PO		POs											PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5	
CO1	3	2	2	3	1	3	3	3	3	3	3	3	2	3	2	2	
CO2	3	2	2	3	1	3	3	3	3	3	3	3	2	3	2	2	
CO3	3	2	2	3	1	3	3	3	3	3	3	3	2	3	2	2	
CO4	3	2	2	3	1	3	3	3	3	3	3	3	2	3	2	2	

[&]quot;3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS:

Unit	Topics	No. of	CO
No.		Lectures	No.
1	Electrochemical Techniques: Fundamentals of Environmental Chemistry: Stoichiometry, Gibb's energy, Chemical potential, chemical equilibria, acid base reactions, solubility product, solubility of gases in water, the carbonate system, unsaturated and saturated hydrocarbons, radionuclide's. Idea of pH and buffer, Buffer capacity and ionic strength; Principle and application of pH-metery, Potentiometery, Conductometry, Coulometry, Polarography, Voltammetry (cyclic and anode stripping), Amperometry and Ion Selective Electrodes.	18	1
2	Spectroscopic Techniques: The basic principle, instrumentation and application of the infrared, FTIR, visible, ultraviolet and Raman and fluorescence spectrometry. Principle, instrumentation and application of atomic absorption (i.e. flame, graphite furnace, hydride generation and cold vapor) spectroscopy and atomic emission (i.e. flame, plasma, spark and arc) spectroscopy. Basic Principle, instrumentation and application of X-ray fluorescence spectroscopy (XRF), Principle, instrumentation and application of mass spectroscopy, types of mass spectroscopy, fragmentation, ionization and characterization of organic and inorganic materials.	18	2
3	Separation techniques: Concept and application of separation probes: adsorption, centrifugation, chromatography, crystallization, decantation, demister (vapour), distillation, drying, electrophoresis, elutriation, evaporation, leaching, liquid-liquid extraction, solid phase extraction, flotation, flocculation, filtration, reverse	19	3

Qhline

(External

Prof. Kamlesh.

K. Shrivas,

Chairman

Prof. P. K. Behera

Prof. Kallol K. Ghosh (member)

(Member)

Prof. Shamsh Pervez (Member)

dubey (member)

Dr. Bhanushrre

Dr. Ajita Dixt (Member)

18 | Page Online Online

Prof. M. K. Deb

Dr. Karuna

Gupta (Memebr) Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member)

Dr. Anand Kamavisdar Dr. Indrapal Karbhal (Member from DST)

	osmosis, dialysis (biochemistry) fractional distillation, fractional freezing, magnetic separation, precipitation, crystallization, sedimentation, sieving, stripping, sublimation, vapour-liquid separation, winnowing and zone refining.		
4	Chromatography and Miscellaneous methods: Principle, instrumentation and application of gas, liquid, adsorption, paper,	20	4
	gel, size exclusion, HPLC, TLC, electrophoresis and ion exchange chromatography. Principle, instrumentation and application of classical analytical methods(i.e. gravimetric, volumetric and thermal methods); Automatic analytical methods and Hybrid analytical methods., nephelometry and turbidimetry.		

Books & References

- 1 G. D. Christian, Analytical Chemistry, 6th Ed, John Wiley & Sons, 2007.
- 2 H. A. Strobel and W. R. Heineman, Chemical instrumentation: a systematic approach, Wiley,
- 3 H. H. Willard, Instrumental methods of analysis, Van Nostrand, 1981.
- 4 Z. Marczenko and M. Balcerzak, Separation, preconcentration and spectrophotometry in Inorganic Analysis, Elsevier, 2000.
- E. B. Sandell and H. Ōnishi, Photometric determination of traces of metals, Wiley, 1978. 5
- 6 B. Welz and M. Sperling, Atomic Absorption Spectrometry, John Wiley & Sons, 2008
- 7 Ed Metcalfe, Atomic absorption and emission spectroscopy, J. Wiley, 1987.

19| Page

Online

from DST)

Qhline

Prof. P. K. Behera (External K. Shrivas.

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh (Member)

Dr. Karuna (member)

Dr. Bhanushrre (Memebr)

Dr. Ajita Dixt

Shri H. (Member)

Shri B. L. (Member)

Dr. Anand Kamavisdar Indrapal Karbhal (Member

Online

M.Sc. (Environmental Science) Semester-I

Program	Subject	Year		Semester				
M.Sc.	Environmental Science	I		I				
Course Code	Course	Course Title						
ENV105	LAB W	LAB WORK-1						
Credit	H	Hours Per Week (L-T-P)						
	L	Т		Р				
3	-	-		10				
Maximum Marks	CIA	CIA						
100	25	25						

Learning Objective (LO):

The course aims to equip students with a deep understanding of advanced practical concepts, in various fields related to Water, Air, Noise etc. empower them to apply this knowledge to solve various environmental problems

Course Outcome (CO):

СО	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to :	
1	Development of deeper understanding of concepts and experiencing experimental procedures directly	Ap
2	Development of data analysis skills regarding physical characteristics of water	Ap
3	Development of data analysis skills regarding chemical characteristics of water	U
4	Developing analytical skills regarding biological characteristics of water	An

CL: Cognitive Levels (**R**-Remember; **U**-Understanding; **Ap**-Apply; **A-** Analyze; **E**-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

_	<i>y-</i> 1 <i>0/</i> 1 <i>b</i> 0	, mag	թթուն	, 101	me c	Jui sc.												
	PO		Pos									os PSO						
	CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5	
	CO1	3	3	3	2	1	2	3	1	3	3	2	3	1	3	2	3	

20| Page

Prof. P. K. Behera (External

Prof. Kallol K.

Prof. Shamsh Pervez (Member)

Dr. Karuna

Online Online

K. Shrivas. Chairman

(member)

Prof. M. K. (Member)

dubey (member)

Dr. Bhanushrre (Memebr)

Dr. Ajita Dixt (Member)

Shri H. (Member) Shri B. L. (Member) Dr. Indrapal Karbhal

CO2	3	3	3	1	1	1	3	3	3	2	1	3	2	3	2	3
CO3	3	3	3	1	1	1	3	3	2	2	2	3	2	3	2	2
CO4	3	3	3	1	1	2	3	1	1	2	1	3	2	3	2	3

[&]quot;3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation.

DETAILED SYLLABUS

Uni	Topics	No. of Lectures	CO No.
No.		Lectures	110.
1	Some Basic Techniques: Preparation of the substance for analysis, Weighing the sample, Solution of the sample, Precipitation, Filtration, Filter papers, Crucibles with permanent porous plates, Washing, precipitates, Drying and igniting precipitates		1
2	Determination of physical characteristics of water: temperature, color, odor, turbidity, TSS and solids.	40	2
3	Determination of Chemical Characteristics of water: pH, TDS, conductivity, salinity, hardness, alkalinity, BOD, COD, cations and anions	35	3
4	Determination of Biological Characteristics of water: counts of specific organisms and groups of organisms	35	4

21| Page

And the state of t

Prof. Kamlesh. K. Shrivas, Chairman Prof. P. K. Behera (External Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Shri H. Deshmukh (Member) Dr. Ajita Dixt (Member)

Shri B. L. Yadaw (Member)

Dr. Anand Kamavisdar (Member from DST) Dr. Indrapal Karbhal (Member)

M.Sc. (Environmental Science) Semester-I

Program	Subject	Year		Semester				
M.Sc.	Environmental Science	1		I				
Course Code		Course Title						
ENV106	LAB W	LAB WORK-2						
Credit	H	Hours Per Week (L-T-P)						
	L	T		P				
2	-	-		10				
Maximum Marks	CIA			ESE				
100	25	25						

Learning Objective (LO):

The course aims to equip students with a deep understanding of advanced practical concepts, in various fields related to Water, Air, Noise etc. empower them to apply this knowledge to solve various environmental problems

Course Outcome (CO):

CO	Expected Course Outcomes	CL
No.	At the end of the course, the students will be able to :	
1	Development of deeper understanding of concepts and experiencing experimental procedures directly	Ap
2	Development of thinking skills (critical, quantitative and qualitative)	Ap
3	Development of data analysis skills and Development of Practical skills, including those involved in working in groups.	U
4	Developing critical thinking for shaping strategies (scientific, social, economic and legal) for environmental protection and conservation of biodiversity, social equity and sustainable development	An

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; A- Analyze; E-Evaluate; C-Create).

22 | Page

K. Shrivas. (External

Prof. P. K. Behera

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh (Member)

Dr. Karuna (member)

Dr. Bhanushrre (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. (Member)

Indrapal Karbhal

Online

CO-PO/PSO Mapping for the course:

PO	POs										PSO					
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	2	1	2	3	1	3	3	3	3	1	3	3	3
CO2	3	3	3	1	1	1	3	2	3	3	3	3	2	3	3	3
CO3	3	3	3	1	1	1	3	3	3	2	3	3	2	3	3	2
CO4	3	3	3	1	1	2	3	1	3	2	1	3	2	3	3	3

[&]quot;3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Uni	Topics	No. of	CO
No.		Lectures	No.
1	Introduction to wastewater analysis: calibration of pH meter, Conductivity meter, TDS meter, Turbidity meter, Rp meter & DO meter.	40	1
2	Determination of physical characteristics of wastewater: temperature, color, odor, turbidity, TSS and solids.	40	2
3	Determination of Chemical Characteristics of wastewater: pH, TDS, conductivity, salinity, hardness, alkalinity, BOD, COD, cations and anions	35	3
4	Determination of Biological Characteristics: counts of specific organisms and groups of organisms	35	4

23| Page

Qhline

Prof. Kamlesh. K. Shrivas, Prof. P. K. Behera (External Chairman

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Online Online

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member)

Dr. Indrapal Karbhal (Member)

M.Sc. (Environmental Science) Semester - II

Program	Subject	Year	Semester
M.Sc.	Environmental Science	I	II
	Course T	Fitle	Course Type
Course code			
ENV201	ENVIRONMENTAI AND CONTROL: AII		CORE
Credit	H	Iours Per Week ((L-T-P)
	L	T	P
5	5	-	-
Maximum Marks	CIA	ESE	
100	25		75

Learning Objective (LO):

The course aims to a deep understanding about the Air Pollution: Atmosphere and its functions, Physical and chemical properties of atmosphere, natural and anthropogenic sources of atmospheric pollutants

Course Outcomes (CO):

СО	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to:	
1	Major and Minor Pollutants in atmosphere (SOx, NOx, CO2, Fluoride etc.), effect	R
	of air pollutants on plants, animals, microorganisms, man, physical structures and	
	materials.	
2	Understanding about the Water Pollution: History of major water pollution	U
	episodes, Sources, Classification and types of Water Pollution, characteristics of	
	domestic, municipal, industrial and agricultural wastes – their effects with special	
	reference to oil and detergents, and Heavy metals (mercury, lead, Arsenic	
	cadmium, chromium), pesticides, and other toxic organic and inorganic	
	constituents. Eutrophication and ecological magnification due to water pollution	
3	Understanding about the Prevention and Control of Air Pollution: Source-	Ap
	emission inventory, Air quality criteria, Air quality standards (Ambient and	
	Emission Standards), Natural self-cleansing properties of the environment	
4	Understanding about the Prevention and Control of Water Pollution: Water quality	Ap
	standard: Drinking Water quality standard, Irrigation water standard, Stream	
	standard and effluent standard, Selection of appropriate unit operation for ETP to	
	achieve desired standards	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

24 | Page

Online

Prof. Kamlesh. Prof. P. K. Behera (External K. Shrivas. Chairman

(member)

Prof. Kallol K.

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh

(Member)

Shri B. L. Dr. (Member)

Dr. Anand Kamavisdar Indrapal Karbhal (Member from DST)

CO-PO/PSO Mapping for the course:

	11 8																
PO		POs										PSO					
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5	
CO1	3	2	2	3	2	2	3	3	2	3	3	3	2	3	2	3	
CO2	3	2	2	3	2	2	3	3	2	3	3	3	2	3	2	3	
CO3	3	2	2	3	2	2	3	3	2	3	3	3	2	3	2	3	
CO4	3	2	2	3	2	2	3	3	2	3	3	3	2	3	2	3	

[&]quot;3" - Strong; "2" - Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit	Torics	No of	CO
No.	Topics	No. of Lectures	No.
	Air Pollution:	20	1
1	Atmosphere and its functions, Physical and chemical properties of atmosphere,	20	1
	, natural and anthropogenic sources of atmospheric pollutants, Major and Minor		
	Pollutants in atmosphere (SOx, NOx,CO2, Fluoride etc.),Gas laws governing		
	the behavior of pollutants in atmosphere, transport and dispersion of pollutants		
	- effect of meteorological and topographical factors, significance of these		
	pollutants and their reactions in the lower and upper atmosphere,, Greenhouses		
	effect, Photochemical smog, Ozone layer depletion Acid rain and their impact.		
	Effect of air pollutants on plants, animals, microorganisms, man, physical		
	structures and materials		
2	Water Pollution:	20	2
	History of major water pollution episodes, Sources, Classification and types of		
	Water Pollution, characteristics of domestic, municipal, industrial and		
	agricultural wastes – their effects with special reference to oil and detergents,		
	and Heavy metals (mercury, lead, Arsenic cadmium, chromium), pesticides, and		
	other toxic organics and inorganic constituents, Eutrophication and ecological		
	magnification due to water pollution.		
3	Prevention and Control of Air Pollution:	17	3
	Source-emission inventory, Air quality criteria, Air quality standards(Ambient		
	and Emission Standards), Natural self cleansing properties of the environment,		
	Dilution methods for controlling air pollution from stationary source,		
	Prevention Methods for control of gaseous air pollutants (Combustion,		
	Absorption and Adsorption), Methods for control of Particulate air pollutants		
	Mechanical device, Filtration, Wet scrubber, Dry Scrubber, Electrostatic precipitator)		
4	Prevention and Control of Water Pollution:	18	4
4	Water quality standard: Drinking Water quality standard, Irrigation water	10	_ -
	standard, Stream standard and effluent standard, Selection of appropriate unit		
	operation for ETP to achieve desired standards. Methods of treatment of waste		
	water: Preliminary Treatment, Primary treatment, (Sedimentation, Equalization		
	and Neutralization, etc.), secondary treatment (Activated Sludge Technique &		
	Trickling Filter) Tertiary treatment methods for waste water treatment		
	(Evaporation, Ion Exchange, Adsorption, Electro dialysis, Electrolytic		
	Recovery, Reverse Osmosis) Characteristics of primary, secondary sludge from		
	effluent treatment plant. Sludge dewatering by sludge thickener, sludge drying		
		25	Page

25| Page

Q'iline

Prof. Kamlesh. K. Shrivas, Prof. P. K. Behera (External Chairman

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Online Online

Shri B. L. Yadaw Dr. Indrapal (Member) Karbhal

beds, vacuum filtration and filter press. Sludge disposal and fill and additive in fertilizers.

Books & References

- 1 N. de Nevers, Air pollution Control Engineering, Mc Graw Hill, 2000.
- 2 K. Work and C. F Warner, Air Pollution, its origin & Control, New York, 1997.
- 3 H. Braur and Y. B. G. Verma, Air Pollution Control Equipment, Springer Verlag, 1981.
- 4 G. Gaur, Air Pollution and its Management, Sarup & Sons, 1997.
- 5 R. K. Trivedi and P. K. Goel, Air Pollution, Techno-science, 1998.
- 6 G. Kiely, Environmental Engineering, Tata MC. Graw Hill, 1997.
- 7 P. K. Goel, Water Pollution, Causes ,effect and Control, New Age International, 2006.
- 8 S. K. Garg, Sewage Disposal & Air Pollution Engineering, Khana Publisher, 2008.
- 9 I. J. Higgins and R. Burns, The Chemistry and ecology of pollution, Academic Press, 1975.
- S. S. Dara, A text book of Environmental Chemistry and Pollution Control, S. Chand, 1993. 10
- 11 A. K. De, Environnental Chemistry, New Age International, 2003.
- J. W. Moore and E. A. Moore, Environmental Chemistry, Academic Press, 1991. 12
- 13 T H Y Tebbut, Principal of water quality control, Pergamon Press, 1992.
- 14 R. K. Trivedy and S. N. Kaul, Advances in Waste water Treatment and Technologies, Vol. II, Global Science, 2000.

Q'aline

Prof. P. K. Behera K. Shrivas. (External

(member)

Prof. Kallol K.

Prof. M. K. (Member)

Prof. Shamsh (Member)

Dr. Karuna (member)

Dr. Bhanushrre (Memebr)

Dr. Ajita Dixt

Shri H. (Member)

Shri B. L (Member) Indrapal Karbhal

Online

Dr. Anand Kamavisdar (Member from DST)

Online

26 | Page

M.Sc. (Environmental Science) Semester - II

Program	Subject	Year		Semester		
M.Sc.	Environmental Science	I		II		
Course Code	Course	Title		Course Type		
ENV202	METEOROLOGY AN	GY	CORE			
Credit	Н					
	L	T		P		
5	5	-		-		
Maximum Marks	CIA	CIA				
100	25		75			

Learning Objective (LO):

The course aims to equip students with a deep understanding of the characteristics and composition of the Earth's atmosphere, oceanic zones, energy and heat balance. Students will acquire proficiency in the fundamentals of meteorological parameters.

Course Outcomes (CO):

CO	Expected Course Outcomes	CL
No.	At the end of the course, the students will be able to:	
1	Describes the composition & layers of atmosphere, layered structure of oceans, radiation balance in atmosphere. Explains the Magnetosphere and radiation belts. Understanding different meteorological parameters and their applications.	U
2	Know the heat balance equations & cycles, thermal cycles in soil & water bodies. Understanding the planetary wind circulations & the global patterns of ocean currents.	U
3	Understanding of Relative humidity and vapor pressure, Absolute and specific humidity, air masses, clouds and fog, forms of precipitation, Convective precipitation and thunderstorms, Orographic precipitation, Water balance of the atmosphere.	U
4	Understanding human induced impact on atmosphere & glaciers and studying the harmful effects of pollution on a global scale. Decribing the effects of meteorological parameters on pollutants and vice versa.	U

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

Prof. P. K. Behera (External K. Shrivas.

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member) (Memebr)

Dr. Bhanushrre

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. (Member) Dr. Indrapal Karbhal

Online

27 | Page

CO-PO/PSO Mapping for the course

PO	POs	PSO PSO														
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	1	1	2	3	1	3	2	1	3	1	1	3	-
CO2	1	3	2	1	1	1	3	-	3	1	3	3	2	1	2	3
CO3	2	1	3	1	1	1	3	-	2	2	3	3	2	2	3	2
CO4	3	3	3	1	1	2	3	1	2	2	1	3	2	2	3	-

[&]quot;3" - Strong; "2" - Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit No.	Topics	No. of Lectures	CO No.
I	Atmosphere, Oceans and Earth's Radiation Balance: Introducing the Atmosphere, The heterosphere, Subdivisions of the homosphere, the troposphere, atmospheric pressure, Introducing the oceans: Composition of Sea water, Density of sea water, Layered structure of Oceans; Solar radiation, Insolation over the Globe, World Latitudinal zones, Insolation losses in the atmosphere, Long wave radiation, Latitude and the radiation balance, Annual and Daily Cycles of radiation, Man's Impact upon the Earth's Energy Balance, Cosmic particles and Ionizing radiation, The magnetosphere, radiation belts Meteorology fundamentals – Pressure, temperature, wind, humidity, radiation, atmospheric stability adiabatic diagrams, turbulence and diffusion. Scales of meteorology.	19	1
II	Thermal Environments of the Earth's Surface and Circulation Systems in Atmosphere and Oceans: Heat flow mechanisms, The Heat Balance Equation, The daily and annual heat balance cycles, Arctic permafrost, Heating and cooling of lakes and oceans, Sea Surface Temperatures, Barometric pressure and winds, Coriolis effect and the geostrophic wind, The Planetary circulation, Global patterns of barometric pressure and surface winds, Local winds, Wind and waves, The causes of ocean currents, Zones of convergence and upwelling, El Nino, ENSO, The Earth's heat balance, Seasons in India. Concept of Monsoon, What are the proxy components helpful in the reconstruction of Indian monsoon, How subterranean caves are helpful in studies of reconstructions of the Indian monsoon. How the Meghalayan Age came into existence.	20	2
III	Atmospheric Energy Releases:- Relative humidity and vapor pressure, Absolute and specific humidity, air masses, condensation and adiabatic process, clouds and fog, forms of precipitation, Convective precipitation and thunderstorms, Orographic precipitation, Cyclonic and frontal precipitation, World precipitation regions, Water balance of the atmosphere, Artificial precipitation.	17	3

1. Show halos Online

Prof. Kamlesh. K. Shrivas, Prof. P. K. Behera (External

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Ajita Dixt (Member)

Dr. Bhanushrre Gupta (Memebr)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member)

Karbhal

Dr. Anand Kamavisdar (Member from DST) Dr. Indrapal (Member)

IV	Man's Impact upon the Atmosphere:-	19	4
	Carbon dioxide and oxygen levels in the atmosphere, Man induced changes in		
	Atmospheric temperature, water vapor, clouds, and precipitation, Urban heat		
	island, Pollutants in the atmosphere, Inversion and smog, Glacial ice as a		
	recorder of air pollution, Harmful effects of atmospheric pollution, Global		
	effects of particles in the atmosphere, Application of meteorological principles		
	to transport and diffusion of pollutants, Scavenging processes, Effects of		
	meteorological parameters on pollutants and vice versa, Wind roses, concepts		
	of climate change. & its reasons and impacts		
	1		

Books & References:-

- Helmis C. G. and Nastos, P. T. (Eds.), Advances in Meteorology, Climatology and Atmospheric Physics, Springer Atmospheric Sciences, 2013.
- 2 P. V. Hobbs and J. M. Wallace, Atmospheric Science: An Introductory Survey, Academic Press Inc, 2006.
- 3 C. Booker, The Real Global Warming Disaster, Continuum Publishing Corporation, 2009.
- 4 A. Goudie, The nature of the environment, Blackwell, 2001.
- K. S. Valdiya, Environmental Geology, Tata Mc Graw Hill, 1984. 5
- 6 Atmosphere, Weather and Climatology: A textbook on climatology, Kisalaya Pub. Pvt. Ltd, New Delhi, 1984.
- 7 R. G. Barry and R. J. Chorley, Atmosphere, Weather and Climate, Routledge, 2009.
- 8 J. E. Martin, Introduction to Weather and Climate Science, Cognella Academic Publishing, 2013.
- 9 J. O. Ayoade, Introduction to Climatology for Tropics, Wiley, 1993.
- 10 The Atmosphere: An Introduction to Meteorology, Prentice Hall; 12 edition, 20012.
- 11 J. Biswas, Cave Science: Insight from the Indian Sub-continent, National Cave Research and Protection Organization, 2022.

Ohline

K. Shrivas.

Prof. P. K. Behera (External

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh (Member)

Dr. Karuna (member)

Dr. Bhanushrre

(Memebr)

Dr. Ajita Dixt

Shri H.

Shri B. L (Member)

Online

29 | Page

(Member)

Indrapal Karbhal

M.Sc. (Environmental Science) Semester – II

Program	Subject	Year		Semester			
M.Sc.	Environmental Science	I		2			
Course Code	Course	Title		Course Type			
ENV203	ENVIRONMENTA	ENVIRONMENTAL GEOSCIENCE					
Credit	Н	Iours Per Week (L	-T-P)				
	L	T		P			
5	5	-		-			
Maximum Marks	CIA			ESE			
100	25		75				

Learning Objective (LO):

Students will have holistic understanding of the factors influencing & shaping environmental conditions on Earth. They will be able to address the physical, chemical & biological processes that control the world's oceans, atmosphere and ecosystems.

Course Outcomes (CO):

Journe	outcomes (co).	
CO	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to:	
1	Understanding the different sphere of Earths, formation of different types of rocks, earth dynamic processes: plate tectonics, types of plates, isostasy, geomorphic agents and formation of land forms.	U
2	Understanding the environmental geochemistry, concept of major, trace and rare elements, geochemical classification of elements, abundance of elements in earth, biogeochemical cycle & mineral stability diagrams and controls on the chemistry' of natural waters.	U
3	Understanding the Global water balance, composition of sea water, Precipitation (Various form of precipitation, interpretation of precipitation data), Infiltration and percolation (Infiltration capacity of soil, Factors influencing infiltration capacity, methods of determining infiltration capacity). Hydrological forecasting: Frequency analysis, cyclical nature of hydrological phenomena.	Ap
4	Understanding of Ground Water Resources and Environment, the occurrence of ground water, Darcy's law: Darcy's experiment; Fundamental Equation of ground water flow: Generalization of Darcy's law, Aquifer and its types, Ground water levels and Environmental influences.	E

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

30| Page Prof. P. K. Behera Prof. Kallol K. Ghosh Dr. Ajita Dixt (Member) Dr. Anand Kamavisdar Prof. M. K. Prof. Shamsh Dr. Karuna Dr. Bhanushrre Shri H. Shri B. L. Dr. Indrapal Pervez (Member) (member) (Memebr) K. Shrivas. (External (member) (Member) (Member) (Member) Karbhal (Member from DST)

CO-PO/PSO Mapping for the course

PO		POs												PSO		
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	1	3	-	1	-	3	1	3	-	-	3	1	2	1	-
CO2	3	3	2	1	1	1	3	-	2	-	2	3	2	1	1	3
CO3	3	1	3	1	1	1	3	-	1	2	-	3	2	2	1	2
CO4	2	2	3	1	1	2	3	1	2	2	1	3	2	1	2	-

[&]quot;3" - Strong; "2" - Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit	Topics	No. of	CO
No.	Fundamentals of Geoscience	Lectures 17	No. 1
	Different spheres in the earth: lithosphere, hydrosphere, atmosphere, biosphere; Primary differentiation and formation of core, mantle, crust, magma generation and formation of igneous rocks: earth dynamic processes: plate tectonics, types of plates, isostasy, geomorphic agents: river, wind, snow, glacier, volcanoes, weathering, erosion, transportation and deposition of earth's materials by running water, wind and glaciers: formation of land forms and sedimentary rocks. What is Karst. What are the components of the Karst System. How Caves are formed in Karst areas, Scope of Karst and Cave Science in India. Why the proper management is required for Karst System? What are the Investigative Techniques in Karst.		
II	Environmental Geochemistry Concept of major, trace and rare earth element, Geochemical classification of elements: Abundance of elements in the bulk earth, crust, hydrosphere, atmosphere and biosphere. mobility of trace elements, geochemical cycles, biogeochemical factors in environmental health, human use, trace elements and health, Mineral stability diagrams and controls on the chemistry' of natural waters.	17	2
III	Surface Water Resources and Environment	20	3

opline (opline

Prof. Kamlesh. K. Shrivas,

Chairman

Prof. P. K. Behera (External

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

311 Pagenline

Dr. Bhanushrre Gupta (Memebr) Dr. Ajita Dixt (Member) Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member) Dr. Indrapal Karbhal (Member)

	Global water balance, ice sheets and fluctuation of sea levels,		
	origin and composition of sea water, hydrological cycle, and its		
	components. Precipitation (Various form of precipitation,		
	interpretation of precipitation data), Evaporation and Evapo-		
	transpiration (Meteorological factors, transpiration, methods of		
	estimating evaporation from land surface using Penman's		
	equation), Infiltration and percolation (Infiltration capacity of		
	soil, Factors influencing infiltration capacity, methods of		
	determining infiltration capacity). Hydrological forecasting:		
	Frequency analysis, series of events, Probability plotting, cyclical		
	nature of hydrological phenomena. Artificial precipitation.		
IV	Ground Water Resources and Environment	21	4
IV	Ground Water Resources and Environment	21	4
IV		21	4
IV	Ground Water Resources and Environment	21	4
IV	Ground Water Resources and Environment The occurrence of ground water factors of influence, ground	21	4
IV	Ground Water Resources and Environment The occurrence of ground water factors of influence, ground water flow, abstraction of ground water, Darcy's law: Darcy's	21	4
IV	Ground Water Resources and Environment The occurrence of ground water factors of influence, ground water flow, abstraction of ground water, Darcy's law: Darcy's experiment; Fundamental Equation of ground water flow: Generalization of Darcy's law. Aquifer and its types; Confined	21	4
IV	Ground Water Resources and Environment The occurrence of ground water factors of influence, ground water flow, abstraction of ground water, Darcy's law: Darcy's experiment; Fundamental Equation of ground water flow: Generalization of Darcy's law. Aquifer and its types; Confined and Unconfined aquifers; Properties of Aquifer, permeability,	21	4
IV	Ground Water Resources and Environment The occurrence of ground water factors of influence, ground water flow, abstraction of ground water, Darcy's law: Darcy's experiment; Fundamental Equation of ground water flow: Generalization of Darcy's law. Aquifer and its types; Confined and Unconfined aquifers; Properties of Aquifer, permeability, porosity. Groundwater occurrence & movement; Ground	21	4
IV	Ground Water Resources and Environment The occurrence of ground water factors of influence, ground water flow, abstraction of ground water, Darcy's law: Darcy's experiment; Fundamental Equation of ground water flow: Generalization of Darcy's law. Aquifer and its types; Confined and Unconfined aquifers; Properties of Aquifer, permeability,	21	4

Books & References:-

- 1. Environmental Geology: Indian Context by K. S. Valdiya, Tata Macgraw Hill
- 2. Environmental Science: E. D. Enger and B. F. Smith
- 3. Introduction to Geochemistry: Krauskoph K. B.
- 4. Geology and our environment, Davis, S. N., Reiton, P. H.& Pestrong, P. Mc. Graw Hill, NY
- 5. Environmental Geology, Keller, E,.A., Bell & Howell, Columbus, Ohio
- 6. Physical Geology, Strahler, A. N., John Harper & Row
- 7. Focus on Environmental Geology, Tank, R.W.Oxford Univ. Press
- 8. Text Book of Geology, P. K. Mukherjee
- 9. Environmental geology, Coates, D. R., John wiley, NY
- 10. J. Biswas, Cave Science: Insight from the Indian Sub-continent, National Cave Research and Protection Organization, 2022.

32 | Page

Online

Online

Prof. Prof. P. K. Kamlesh. Behera K. Shrivas, (External

Prof. Kallol K. Ghosh (member) Prof. M. K. Deb (Member) Prof. Shamsh Pervez (Member) Dr. Karuna dubey (member) Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member) Shri H. Deshmukh (Member) Shri B. L. Yadaw (Member)

B. L. D w In nber) K

Dr. Dr. Anand Indrapal Kamavisdar Karbhal (Member (Member) from DST)

M.Sc. (Environmental Science) Semester-II

Program	Subject	Year	Semester
M.Sc.	Environmental Science		
Course Code	Course	Title	Course Type
ENV204	WATER AND WAS TREATMENT TECH		ELECTIVE
Credit	H	Hours Per Week (L-	T-P)
	L	Т	P
5	5	-	-
Maximum Marks	CIA		ESE
100	25		75

Learning Objective (LO):

The course aims to equip students with a deep understanding of water and wastewater, wastewater treatment, water quality standard, and them to apply this knowledge to minimize water pollution and learn wastewater management.

Course Outcomes (CO):

CO	Expected Course Outcomes	CL
No.	At the end of the course, the students will be able to:	
1	After studying this unit students will be able to understand the water and its types, characteristics of water, various stages of water treatment.	U
2	Understand the characteristics of waste water and treatment plant effluents, methods of treatment of waste water: preliminary treatment. primary treatment. (sedimentation. equalization and neutralization. etc.) secondary treatment (activated sludge technique & trickling filter).	Ap
3	Tertiary treatment methods for waste water treatment (evaporation. ion exchange adsorption, electro dialysis, electrolytic recovery. reverse osmosis)	Ap
4	Understand about the prevention and control of water pollution: water quality standard: drinking water quality standard, irrigation water standard, stream standard and effluent standard. Selection of appropriate unit operation for LTPto achieve desired standards	Е

CL: Cognitive Levels (**R**-Remember; **U**-Understanding; **Ap**-Apply; **An**-Analyze; **E**-Evaluate; **C**-Create).

33| Page

W. Show Joles Online

Prof. Prof. P. K. Kamlesh. Behera K. Shrivas, (External Chairman member Prof. Kallol K. Ghosh (member) Prof. M. K. Deb (Member) Prof. Shamsh Pervez (Member) Dr. Karuna dubey (member) Dr. Bhanushrre Gupta (Memebr) Dr. Aiita Divt

10/05/2020

20103/31

Online Online

Dr. Ajita Dixt (Member) Shri H. Deshmukh (Member) Shri B. L. Yadaw (Member) Dr. Dr. Anand Indrapal Kamavisdar Karbhal (Member (Member) from DST)

CO-PO/PSO Mapping for the course:

PO		POs										PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	1	3	2	3	2	2	2	2	3	1	2	1	2
CO2	3	3	3	2	2	2	3	2	3	3	3	3	2	2	1	3
CO3	3	3	3	2	2	1	3	2	3	3	3	3	2	2	1	2
CO4	3	3	3	2	3	2	3	2	3	3	3	3	2	2	1	3

[&]quot;3" - Strong; "2" - Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit	Topics	No. of	CO
No.		Lectures	No.
Ι	Water Pollutants and Treatment	10	1
	Types and Sources, quality of water (water, sewage and		
	industrial wastewater), various stages of water treatment		
	flocculation and coagulation, Sedimentation, Filtration: slow		
	and rapid sand filters, disinfection		
II	Wastewater Treatment	25	2
	Characterization and degree of treatment-Self purification in a		
	stream, characteristics of waste water and treatment plant		
	effluents, Dissolved oxygen, Esturine pollution Primary		
	treatment: Screening, Grit removal, Neutralization,		
	Equalization, Coagulation, Flocculation, Sedimentation,		
	Flotation (oil & grease removal), Air stripping Secondary		
	treatment- principles of waste treatment, basic kinetic		
	equations, continuous flow treatment models, oxygen		
	requirement in aerobic process, production of sludge.		
	Conventional biological process: Activated Sludge Process		
	(ASP), UASB, Trickling Filters and RBC, Nitrogen		
	removal: Nitrification and denitrification process,		
	phosphorous removal. Low cost wastewater treatment:		
	Aerated lagoons, stabilization ponds, oxidation ditches.		
III	Tertiary Treatment of Wastewater	20	3
	Tertiary treatment-ion exchange, Membrane separation		
	Techniques: Brief description of MF, UF, NF membranes.		

Qhline

(External

Prof. Kamlesh. K. Shrivas,

Prof. P. K. Behera

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna

34| Page Online Online

dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member) Dr. Indrapal Karbhal

	Reverse osmosis principle, Membrane materials, Types of		
	1 1 7		
	membranes – Plate & frame, tubular, hollow fibre, spiral		
	wound membranes, application of membranes in various		
	industrial applications., electro chemical techniques: electro		
	dialysis, electro coagulation, <i>Evaporators</i> : forced		
	evaporation , Multiple effect evaporators - falling film ,		
	raising film, forced circulation, agitated thin film driers.		
	Advanced oxidation process, photo catalysis, Ozonation,		
	Fenton process, Hydrodynamic cavitation.		
IV	Sewage and Industrial Wastewater Treatment and	20	4
	Disposal Introduction, importance of sewage,		
	Characteristics of sewage, Sewage treatment and disposal:		
	Grit chamber, Sedimentation tanks, Secondary treatment:		
	Activated sludge process, sludge digestion. Sludge disposal.		
	Septic tank. Sources, Characteristics, methodology and		
	process for the treatment of industrial wastes of sugar		
	industry- beverage industry- tannery industry- textile mill		
	waste industry- fertilizer plant- steel plant- oil refinery-paper		
	and pulp mill. Legislation, Cleaner technologies: Water		
	conservation, By-product recovery, Zero liquid discharge		
	(ZLD).		

Books & References

- 1. Water Supply and Sanitary Engineering G.S.Bridie & J.S.Brides, Dhanpat Rai & Sons 1993.
- 2. A treatise on Rural, Municipal, and industrial water management KVSG Murali Krishna
- 3. Environmental sanitation (Social and Preventive medicine) Dr. P.V. Rama Raju & KVSG Murali Krishna.
- 4. Waste water engineering, treatment and reuse by Metcalf and eddy, fifth edition, Tata Mc Graw
- 5. Municipal and Rural Sanitation-Ehlers, V.M.&Steel, E.W. McGRAW-HILL Book Company, Inc V. edition. 1987.

35| Page

Online

Prof. P. K. Behera K. Shrivas. (External Chairman

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt

Shri H. (Member)

Shri B. L. (Member)

Dr. Anand Kamavisdar Dr. Indrapal Karbhal (Member from DST)

M.Sc. (Environmental Science) Semester-II

Program	Subject	Year	Semester	
M.Sc.	Environmental Science	I	II	
Course Code	Course	Title	Course Type	
ENV205	ENVIRONMENTAI CONTROL: SOIL, RA (I	Elective		
Credit	H	Iours Per Week (L-	T-P)	
	L	T	P	
5	5	-	-	
Maximum Marks	CIA	CIA		
100	25		75	

Learning Objective (LO):

The course aims to equip students with a deep understanding of soil properties and soil chemistry bio-magnification of heavy metals and pesticides, fate of MSW, BMW, HW and radioactive pollution and management, noise pollution and its impacts on human and Environment. Overall student can analyze various aspects of pollution and its prevention.

Course Outcomes (CO):

CO	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to:	
1	Understanding about physiochemical properties of soil, industrial waste types, heavy metal contamination, source translocation and uptake of heavy metals,	U
	pollution due to pesticide in soil, alternate methods of pest control, pollution due to fertilizers(N,P,K)	
2	Municipal solid waste -source ,nature, and characterization, management of solid and hazardous solid waste, Hazardous and biomedical waste -all point of view, guidelines for HWM and biomedical waste management. Fly ash and red mud treatment and disposal	Ap
3	Radioactivity- discovery, measuring units and definition, source and classification of radioactive pollution, mechanism of radiation action on living system. Protection and control from radiation, disposal of radioactive waste	An
4	Sound waves (spherical and plane wave), noise sources, effect of noise on human health, noise standards and limit value. Prevention and control of noise pollution.	Е

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

36| Page

Prof. P. K. Behera K. Shrivas. (External

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member)

Dr. Bhanushrre Gupta (Memebr)

Online

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. (Member) Dr. Indrapal Karbhal

CO-PO/PSO Mapping for the course:

CO		POs									PSO					
PO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	2	3	3	3	2	9	3	3	3	3	3	2	3
CO2	3	3	3	2	3	3	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	2	3	3	3	3	2	3	2	3
CO4	3	3	3	2	3	3	3	2	3	3	3	3	2	3	2	3

[&]quot;3" - Strong; "2" - Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit	Topics	No. of	CO
No.		Lectures	No.
I	Soil Pollution and Control	20	1
	The nature and importance of soil. Physical and Chemical properties of soil,		
	Industrial wastes of different kinds, their interactions with soil components,		
	problems due to toxic heavy metals and. Contamination of radionuclides, Source		
	translocation, distribution and uptake of heavy metals, toxic and ecological		
	effect, Pollution due to pesticides in soil, persistence, fate and degradation of		
	pesticides in soil, Toxicity and effect of pesticides on soil organisms and plants,		
	Alternate methods of pest control: Biological control, Hormonal control,		
	Integrated pest management, Pollution due to fertilizers (N, P and K) and their		
	interactions with different components of soil.		
II	Solid Waste Pollution and Control	19	2
	Sources, nature and characterization of municipal solid waste, Hazards from		
	these solid waste, various methods of disposal and management of solid and		
	hazardous waste (composting, recycling, bio-methanation, pelletisation,		
	pyrolysis, incineration, gasification, sanitary disposal etc.), hazardous and		
	biomedical waste: categorization, generation, collection, transport, treatment		
	and disposal, Hazardous waste and biomedical waste.		
III	Radiation Pollution and Control	18	3
	Discovery' of Radioactivity, Units of measurement and definition of		
	radioactivity, Sources and Classification of radioactive pollution, Methods of		
	radioactivity measurements, biological pathways, transport and effects of		
	radiation, Mechanism of Radiation action on living system – Stochastic and		
	Non-stochastic effects: delayed effects; protection and control from radiation,		
	disposal of radioactive waste.		
IV	Noise Pollution and Control	18	4
	Basic properties of sound waves-plane and spherical waves, sound pressure and		
	intensity levels, decibel, effect of meteorological parameters on sound		
	propagation. Noise sources; (machinery noise, pumps; compressors, building		
	and construction equipment, domestic appliances, traffic – vehicular, train,		
	The second of th	l .	D 0 0 0

V. Share Jago Anline

Prof. Kamlesh. K. Shrivas,

Chairman

Prof. P. K. Behera (External

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

37| Page

Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member) Dr. Indrapal Karbhal

aircraft) effect of noise on human health, noise standards and limit values. Prevention and control of Noise Pollution (sound absorbing materials, reverberation time, acoustic silencers, mufflers, barriers, vibration and impact isolation, anechoic chamber, greenbelt development).

Reference Books:

- S. E. Manahan, Environmental chemistry. Lewis Publ., 1992
- 2 A.P. Sincero and G.A. Sincero, Environmental Engineering, Prentice, 1996.
- 3 C. S. Rao, Environmental Pollution Control Engineering, Willey Estern, 2007
- 4 P. F. Cunniff, Environmental noise pollution, Wiley, 1977.
- 5 A. Farmer, Handbook of Environmental Protection and Enforcement: Principles and Practice, Earthscan, 2007.
- S. Dara, Textbook of Environmental Chemistry and Pollution Control, Chand (S.) & Co 6 Ltd, 2006.
- 7 H. J. Arnikar, Essential of Nuclear Chemistry: New Age International Publishers, 2011
- 8 P. R.Trivedi and Raj G. (Eds.) Encyclopaedia of Environmental Sciences: Solid Waste Pollution Vol.24. Akashdeep, Publishing House, 1992.
- 9 D. Mani and S. G. Mishra, Soil Pollution, APH Publishing, 2009.
- 10 P. K. Gupta, Pesticides in Indian Environment, Interprint, 1986
- 11 H. D. Forth, Fundamentals of Soil Sciences: New York: Wiley, 1990
- 12 T. D. Biswas and S. K. Mukherjee, Text-Book of Soil Sciences, Tata McGraw-Hill, 1987

38 | Page

Online

And Online

K. Shrivas.

Prof. P. K. Behera (External

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh (Member)

Dr. Karuna (member)

Dr. Bhanushrre (Memebr)

Dr. Ajita Dixt

Shri H. (Member) Shri B. L. (Member)

Dr. Anand Indrapal Kamavisdar Karbhal (Member from DST)

Online

M.Sc. (Environmental Science) Semester-II

Program	Subject	Year	Seme	ster		
M.Sc.	Environmental Science	I	I I			
C C. d.		mul.	C	т		
Course Code	Course	e i itie	Course	Type		
ENV206	LAB W	LAB WORK-3				
Credit	Н	ours Per Week (L	T-P)			
	L	Т	P			
2	-	-	10)		
Maximum Marks	CIA	ESE	ESE			
100	25		75	75		

Learning Objective (LO):

The course aims to equip students with a deep understanding of advanced algebraic concepts, particularly in groups and field theory, and empower them to apply this knowledge to solve mathematical problems and engage with higher-level algebraic research. To develop various processes/skills e.g. observation, discussion, explanation, experimentation, logical reasoning, through interaction with immediate surroundings, develop sensitivity for the natural, physical and human resources in the immediate environment.

Course Outcome (CO):

CO	Expected Course Outcomes	CL
No.	At the end of the course, the students will be able to :	
1	Development of deeper understanding of concepts of soil characteristics.	Ap
2	Experiencing experimental procedures directly and Development of analytical skills regarding chemical properties of soil.	Ap
3	Development of Practical skills of soil organic matter and concentration of fertilizer in soil.	U
4	Development of Practical skills of heavy metal toxicity and its possible harmful impacts.	An

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; A- Analyze; E-Evaluate; C-Create).

39| Page

Prof. P. K. Behera (External K. Shrivas.

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member)

Dr. Bhanushrre (Memebr)

Dr. Ajita Dixt

Shri H. (Member) Shri B. L. (Member) Dr. Indrapal Karbhal

CO-PO/PSO Mapping for the course:

PO	POs										PSO					
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	2	1	2	3	1	3	3	3	3	1	3	2	-
CO2	3	3	3	1	1	1	3	2	3	2	2	3	2	3	2	3
CO3	3	3	3	1	1	1	3	3	3	2	1	3	2	3	2	2
CO4	3	3	3	1	1	2	3	1	3	2	1	3	2	3	2	1

[&]quot;3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit	Topics	No. of	CO
No.		Lectures	No.
1	Determination of Specific Gravity, Bulk Density and Moisture Content of a given soil sample.	35	1
2	Determination of Sodium, Potassium, Lithium and Calcium of soil sample by using flame Photometer.	35	2
3	Determination of Organic Carbon, NPK and CEC of a given soil sample.	40	3
4	Determination of Bioavailable and Total Heavy Metals in soil.	40	4

40 P a g e

Online

Online Online

Prof. Kamlesh. K. Shrivas, Prof. P. K. Behera (External Chairman

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

(Member)

Shri B. L. Yadaw

Dr. Indrapal Karbhal

Dr. Anand Kamavisdar (Member from DST)

Online

M.Sc. (Environmental Science) Semester-II

Program	Subject	Year		Semester		
M.Sc.	Environmental Science	I		II		
Course Code	Course	Title		Course Type		
ENV207	LAB W	LAB WORK-4				
Credit	Н	ours Per Week (L	-T-P)			
	L	Т		P		
2	-	-		10		
Maximum Marks	CIA		ESE			
100	25			75		

Learning Objective (LO):

The course aims to equip students with a deep understanding of advanced algebraic concepts, particularly in groups and field theory, and empower them to apply this knowledge to solve mathematical problems and engage with higher-level algebraic research. To develop various processes/skills e.g. observation, discussion, explanation, experimentation, logical reasoning, through interaction with immediate surroundings. develop sensitivity for the natural, physical and human resources in the immediate environment.

Course Outcome (CO):

CO	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to:	
1	Reporting of ambient PM10 and PM2.5.	Ap
2	Ambient measurement of SO2, NO2 using a solvent absorption method and CO & CO2 monitoring.	Ap
3	Measurement of ambient noise & traffic noise.	U
4	Preparation of noise contour map.	An

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; A- Analyze; E-Evaluate; C-Create).

41 | Page Prof. P. K. Prof. Kallol K. Prof. M. K. Prof. Shamsh Dr. Karuna Dr. Bhanushrre Dr. Ajita Dixt Shri H. Shri B. L. Dr. Dr. Anand Deshmukh Indrapal Kamavisdar Behera Pervez (Member) (External (Member) (member) (Memebr) (Member) K. Shrivas. (member) (Member) Karbhal (Member from DST)

CO-PO/PSO Mapping for the course:

PO	POs										PSO					
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	-	1	-	3	1	-	-	-	3	1	-	-	-
CO2	3	3	3	1	1	1	3	-	-	-	-	3	2	-	-	3
CO3	3	3	3	1	1	1	3	-	-	2	-	3	2	-	-	2
CO4	3	3	3	1	1	2	3	1	-	2	1	3	2	-	-	-

[&]quot;3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit	Topics	No. of	CO
No.		Lectures	No.
I	Calibration and Determination of SPM/PM10/PM 2.5 in ambient air by using air sampler.	40	1
2	Determination of CO, CO ₂ , SO ₂ and NO ₂ in ambient air.	40	2
3	Determination of Ambient noise monitoring& Traffic Noise Monitoring.	35	3
4	Noise survey and development of noise profile in a multiple noise sources situation.	35	4

42 | Page

V. Share Jago Anline

Prof. P. K. Behera (External

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Ajita Dixt (Member)

Online Online

Dr. Bhanushrre Gupta (Memebr)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member)

Dr. Indrapal Karbhal

M.Sc. (Environmental Science) Semester - III

Program	Subject	Year	Semester
M.Sc.	Environmental	II	III
	Science		
	Course T	Course Type	
Course			
code			
ENV301	ENVIRONM	CORE	
	TOXICOI	LOGY	
Credit	Н	ours Per Week	(L-T-P)
	L	T	P
5	5	-	-
Maximum	CIA	ESE	
Marks			
100	25	_	75

Learning Objective (LO):

The course aims to a deep understanding about the toxicology of toxic substance whether they could impact changes in behavior.

Course Outcomes (CO):

СО	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to:	
1	Introducing Toxicology and its History, disciplines and importance of toxicology	U
2	Study of Translocation of Toxicity, Absorption, Distribution and Excretion of toxic substances	U
3	Biotransformation and Bioaccumulation of Toxicants in living oraganism and physical environment.	An
4	Understanding of Toxicity Tests, Safety Evaluation of Chemicals and Safety measures and Health Impacts.	An

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

PO CO		POs										PSO					
	1	2	3	4	5	2	7	8	9	10	11	1	2	3	4	5	
CO1	3	1	2	3	1	2	3	3	2	3	3	3	2	-	2	2	
CO2	3	1	2	3	1	2	3	3	2	3	3	3	2	2	2	2	
CO3	3	1	2	3	1	2	3	3	2	3	3	3	2	2	2	2	
CO4	3	1	2	3	1	2	3	3	2	3	3	3	2	2	2	2	

"3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation

43 | Page

Online

Online

Prof. P. K. Behera K. Shrivas. (External

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L.

(Member)

Indrapal

DETAILED SYLLABUS

Unit	Topics	No. of	CO
No.	Topics	Lectures	No.
1	Introducing Toxicology: History, disciplines and importance of toxicology, Potency and Toxicity, Acute toxicity, chronic toxicity), Hazards, Risks, Benefit-torisk-ratio, tolerance limits, Acceptable daily intake, Threshold value. Factors affecting toxicity: Host factor (Age ,species and strain, sex, life stage, health and nutrition, Idiosyncratic toxicity) interaction between chemicals (synergistic, additive and antagonistic). Environmental factors, Physico-chemical properties of toxic substances, route and rate of exposure, Dose, Effect and response, Dose-response curves, & Dose effect relationships (Graded & Quantal response). Statistical concept of toxicity, margin of safety and therapeutic index	19	1
2	Translocation of Toxicity: Absorption, Distribution and Excretion of toxic substances. Absorption: membrane permeability, mechanism of chemical transfer (passive transport, active transport, facilitated transport), absorption (Gastrointestinal, skin, lungs). Distribution: tissue affecting distributions and tissues retention. Excretion: Renal excretion, Biliary excretion and Gastrointestinal. Receptor Concept, Nature of receptors, Theory of toxicant receptor interaction, Mechanism of action of some Pesticides (organochlorine, carbamate and organophosphate) and heavy metals (lead, arsenic, mercury, cadmium and chromium)	18	2
3	Biotransformation and Bioaccumulation of Toxicants: Site, Biotransformation reactions, Phase-I (Oxidation, Reduction, Hydrolysis) and Phase- II (Conjugation) reactions and associated enzymes (cytochrome P450 system, cytochrome-b5 system, amine oxidase epoxide hydrolase, esterases and amidases, glutathione-stransferase), factors (environmental, chemical and organismal) affecting biotransformation of xenobiotics, concept of bioconcentration, bioaccumulation and biomagnifications. Process of accumulation and elimination of toxicants	20	3
4	Toxicity Tests and Safety Evaluation of Chemicals: Toxicity tests: Types of toxicity test based on number of species(single species, Multipecies and Ecosystem tests), based on exposure(single dose and multiple dose), based on duration of exposure (acute and chronic toxicity test), specific toxicity tests(potentiation, teratogenicity, reproductive, carcinogenicity, skin, eye tests), safety evaluation of chemicals: introduction and definition of safety, process of risk assessment and safety evaluation programmer (nature of chemical, usage pattern, environmental level & fate, human exposure & effect, monitoring, surveillance and follow-up, decision making).	18	4

Books and References

Toxicology Vol I ,II and III : Gupta, Metropolitan 1.

Experimental toxicology: Anderson & Conning 2.

Q.hline

Prof. Kamlesh. K. Shrivas, Chairman

Prof. P. K. Behera (External

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member)

Dr. Indrapal Karbhal

Online

44 | Page

Dr. Anand Kamavisdar (Member from DST) (Member)

Online

- 3. Environmental Pollution and Toxicology: Ray Choudhury & Gupta, Today & Tomorrow Pub.
- 4. Toxicology, Omkar
- 5. Toxicology, Sood, Sarup and Sons

M.Sc. (Environmental Science) Semester-III

Program	Subject	Year		Semester	
M.Sc.	Environmental Science	II		III	
Course Code	Course	Title		Course Type	
ENV302	ENVIRONMENTAL M	ICROBIOLOGY	Core		
Credit	Н	ours Per Week (L	T-P)		
	L	Т		Р	
5	5	-		-	
Maximum Marks	CIA		ESE		
100	25		75		

Learning Objective (LO):

The course aims to equip students with a deep understanding environmental concept, principals and the world of microorganisms from the point-view of interaction and reaction of microbial impacts and role of microorganisms in the environment. Control and resolve environmental problems that affect our live. Characterized the microorganisms and their activities exists in air, water and soil environment in combination with factors that influencing their activity and development. Microbial community dynamics, Microbial habitats (air, soil, subsurface, freshwater, marine and the deep sea), Natural microbial communities with emphasis on biofilms, Also, it covered biodeterioration and biodegradation of the environmental pollutants. Microbial interactions: microbe-microbe interactions, plants as microbial habitats, animals as microbial habitats.

Course Outcome (CO):

CO	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to :	
1	After studying this paper (Course), students will be able to - Understand about	Ap
	Fundamentals of Environmental Microbiology, An overview of microbial diversity,	
	Distribution of microbes in air and water	
2	Learn the Microbial Culture, Enumeration, Growth and Metabolism process.	Ap
	Summarize the microbe-microbe interaction, microbe-plant interaction, microbe-	
	animal interaction	

Qh1ine

K. Shrivas.

Prof. P. K. Behera (External

Prof. Kallol K. (member)

Prof. M. K. (Member)

(Member)

Dr. Karuna

Dr. Bhanushrre

Dr. Ajita Dixt

45 | Page

Prof. Shamsh (member)

(Memebr)

Shri H. (Member) Shri B. L. (Member)

Dr. Anand Indrapal Kamavisdar Karbhal (Member from DST)

3	Understand the Control of Microorganisms by physical, Chemical and	U								
	chemotherapeutic agents with the mode of action including various antibiotics.									
4	Understand the Applied Microbiology such as. Microbes used as bio fertilizer, Bio	An								
	pesticides, Single cell protein, Mycorrhizae and their significance, Microbial									
	leaching of metals, Microorganisms as source of fuel. Learn lots of knowledge about									
	role of microbes in the synthesis of Alcohol, organometallic compound, Application									
	of microbes for biological treatment of waste water, microbiological biodegradation									
	of Industrial wastes									

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; A- Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

PO		POs												PSO PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5		
CO1	3	3	3	2	1	2	3	1	3	2	2	3	1	3	2	1		
CO2	3	3	3	1	1	1	3	2	3	2	1	3	2	3	2	3		
CO3	3	3	3	1	1	1	3	2	3	2	1	3	2	3	2	2		
CO4	3	3	3	1	1	2	3	1	3	2	1	3	2	3	2	1		

[&]quot;3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

	DETAILED STELABUS		
Unit	Topics	No. of	CO
No.		Lectures	No.
I	Fundamentals of Environmental Microbiology	20	1
	An over view of microbial diversity (Archaea, Eubacteria,		
	Eukaryotic microbes) cellular organization of bacteria and		
	their types and distribution, microorganisms as component of		
	the environment. Distribution of microbes in air, Allergic		
	disorders by air microflora fungal and pollen allergens. The		
	microbial community in Marine and Fresh water		
	environments. Microbiology of soil - soil habitats,		
	Nutritional types of microorganisms.		
II	Microbial Culture, Enumeration, Growth and	18	2
	Metabolism		
	Concept of microbial culture (culture media, culture		
	techniques like enrichment culture, pure, synchronous and		
	continuous culture), Collection and enumeration of		
	aeroallergens. Bacteriological analysis of water, sewage and		
	waste water. Microbial examination of milk & dairy		
	products. Microbial growth (different growth phases,		

46| Page

Prof. P. K. Behera Kamlesh. K. Shrivas, (External

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh

(Member)

Online

Shri B. L. Yadaw

(Member)

Dr. Indrapal (Member Karbhal

	multiplication and kinetics of growth) and microbial metabolism (aerobic, anaerobic, fermentative pathways)		
III	Control of Microorganisms Physical agents (temperature, pressure, radiation), chemical agent (bacteriocidal and bacteriostatic compounds, halogens and phenolic) for control of microbes, chemotherapeutic agents (drugs and antibiotics) and their mode of action	18	3
IV	Applied Microbiology Microbes as biofertilizers, biopesticides and single cell protein, mycorrhiza and their significance, microbial leaching of metals, microorganisms as source of fuel, role of microbes in the synthesis of Alcohols, Antibiotics, Amino acids, dairy products enzymes, vitamin productions and other organic acids.	20	4

Books Recommended

- 1. Microbiology – Fundamentals and application R.M.Atlas ,Maxwell-Mcmillan International Ed.
- 2. Broke -Biology of Microorganisms M.T. Madigan, J.M Martinko and J.Parker, Prentice Hall International 1998
- 3. Microbiology -L.M. Prescott, J.P. Harley and D.A. Klein, Tata Mc Graw Hill 2003

References Books:

- Fundamentals of Microbiology and immunology, A.K. Banerjee and N. Banerjee ,Central Book Deport 2006
- 2. Microbiology -Michael J. Pelzer, Tata Mcgraw Hill
- 1. Microbes, Man and Animals: The Natural History of Microbial Interactions: Linton, A. H. and Burns, R.G. (1982) john Wiley and Sons.
- 2. Elements of Microbiology: Pelczar, M.J. and Chan ECS, 1981 McGraw Hill.

47 | Page

Online

K. Shrivas.

Prof. P. K. Behera (External

(member)

Prof. Kallol K.

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member)

Dr. Bhanushrre (Memebr)

Dr. Ajita Dixt

Shri H. (Member)

Shri B. L. (Member) Indrapal Karbhal

M.Sc. (Environmental Science) Semester - III

Program	Subject	Year		Semester		
M.Sc.	Environmental Science	II		3		
Course Code	Course		Course Type			
ENV303	DATA ANALYSIS IN SCIEN	ΓAL	CORE			
Credit	H	Iours Per Week (L-	-T-P)			
	L	T		P		
5	5	-		-		
Maximum Marks	CIA		ESE			
100	25	75				

Learning Objective (LO):

Recognize, describe, and calculate the measures of data: quartiles and percentiles, the measures of the center of data: mean, median, and mode. Recognize, describe, and calculate the measures of the spread of data: variance, standard deviation, and range.

Course Outcomes (CO):

	outcomes (co):	
CO	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to:	
1	Understanding different types of data and its representation in different graphical	U
	formats. Knowing sampling methods and experimental designs.	
2	Understanding and calculating central tendencies & measure of dispersion.	Е
3	Understanding of Binomial, Poisson and normal distribution; Testing of	U
	Hypothesis: Null and Alternative Hypothesis & understanding and application	
	Student's t distribution, Chi-square test.	
4	Understanding & calculation of correlation & regression & application of	E
	ANOVA (analysis of variance)	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

48 | Page

Qhline

Prof. Prof. P. K. Kamlesh. Behera K. Shrivas, (External

K.

Prof. Kallol K. Ghosh (member) Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member) Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr) Dr. Airo Dina

Dr. Ajita Dixt (Member) Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member)

AM Online Onlin

Dr. Dr. Anand Indrapal Kamavisdar Karbhal (Member (Member) from DST) **CO-PO/PSO** Mapping for the course

РО		POs											PSO				
со	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5	
CO1	3	3	1	-	1	-	3	1	-	2	3	3	1	-	2	•	
CO2	1	3	2	1	1	1	3	1	2	-	2	3	2	3	2	3	
CO3	3	2	3	1	1	1	3	-	3	2	-	3	2	2	1	2	
CO4	3	3	1	1	1	2	3	1	-	2	1	3	2	-	3	-	

[&]quot;3" - Strong; "2" - Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit No.	Topics	No. of Lectures	CO No.
	Fundamentals of Statistics	17	1
	Population & sample, Variables, Primary and secondary data, Collection of data, Classification and tabulation of data, Need and usefulness of Diagrams & Graphs, Different types of diagrams and graphs. Frequency distribution: Discrete and continuous frequency distribution, sampling methods (random sampling, Stratified random sampling, Systematic sampling), sampling errors, Experimental design: completely randomized block design, randomized block design, Latin square design.		
II	Descriptive Statistics	21	2
	Measure of central tendency (Averages), Types of mean: Arithmetic mean, Geometric mean, Harmonic mean; Median, Mode, relation between mean median and mode; Measure of dispersion: Range, Mean deviation & Standard deviation; Skewness and Kurtosis.		
III	Theoretical Probability Distribution	19	3
	Binomial, Poisson and normal distribution; Testing of Hypothesis: Null and Alternative Hypothesis, level of significance, Student's t distribution and its application, Chisquare(x^2) test & its application.		
IV	Correlation, Regression and ANOVA Analysis	18	4
	Types of correlation; simple, partial and multiple correlation,		
L	Method of study & testing the significance of correlation		49

9| Page

Qhline

Prof. Kamlesh. K. Shrivas, Chairman

Prof. P. K. Behera (External

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Online Online

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member) Dr. Indrapal Karbhal (Member)

coefficient, Rank correlation, Regression analysis: regression equations and regression lines, Properties of regression lines, regression coefficient, testing the significance of regression coefficient. Analysis of variance (ANOVA): One way and two way classification and their applications.

Books & References:-

- 1. Walpole, R. and R. Myers (1993). Statistics for Engineers and Scientists, 5th edn. MacMillan, N.Y.
- 2. Manly (2001) Statistics for environmental science and management, Chapman and Hall / CRC.

3. Statistics : Gupta, Sultan & Chand4. Fundamental of Statistics: Elhance

5. Biostatics: Mishra & Mishra

6. Statistical Methods: Snedecor and Cochran

7. Introduction to Biostatistics by N. Gurumani, MJB Publisher

M.Sc. (Environmental Science) Semester-III

Program	Subject	Year	Sen	nester		
M.Sc.	Environmental Science	II		III		
Course Code	Course	Title	Cour	se Type		
Course Code	Course	Cour	зе турс			
ENV304	ENVIRONMENTAL	GY C	ORE			
Credit	H	Iours Per Week (L	T-P)			
	L	T		P		
5	5	-		-		
Maximum Marks	CIA	ESE	ESE			
100	25		75			

Learning Objective (LO):

The aim of this course is to make students proficient in understanding of advanced applications in biotechnology including bioremediation, phytoremediation, biotechnology for air & water pollution and solid waste management. Through this knowledge, they will develop a strong foundation in practical application of biotechnology to addresses environmental problems.

50 | Page

Qhline Qhline

Prof. Prof. P. K. Kamlesh. Behera K. Shrivas, (External Chairman member Prof. Kallol K. Ghosh (member) Prof. M. K. Deb (Member) Prof. Shamsh Pervez (Member) Dr. Karuna dubey (member) Dr. Bhanushrre Gupta (Memebr) Dr. Ajita Dixt

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member) Dr. Indrapal Karbhal

Online

Dr. Anand Kamavisdar Ohal (Member mber) from DST)

Online

Course Outcomes (CO):

CO	Expected Course Outcomes	CL
No.	At the end of the course, the students will be able to:	
1	After studying this unit students will be able to understand the Bioremediation and its types, role of microbes in biodegradation of xenobiotic compounds, Biosorption & bioleaching. bioindicators, biomarkers and biosensor in waste treatment	Ap
2	Understand the Various methods to treat contaminated sites & wastelands. Bioremediation of contaminated soils, aquifers and industrial waste. Phytoremediation and hyperaccumulator plants.	Ap
3	Students will understand the air and water pollution reduction techniques in biotechnology. The different treatment like aerobic & anaerobic biological process	Ap
4	Understanding the biotechnology for solid waste management. Composting of solid waste and different techniques: vermicomposting and its types.	Ap

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

PO					PSO											
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	2	1	2	3	2	2	3	2	3	2	2	2	3
CO2	3	3	3	1	1	1	2	2	3	3	1	3	2	3	2	3
CO3	3	3	3	2	2	3	2	2	2	2	2	3	2	3	2	3
CO4	3	3	3	1	1	2	3	1	2	2	1	3	2	3	2	3

"3" - Strong; "2" - Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit	Topics	No. of	CO
No.		Lectures	No.
I	Bioremediation Scope of bioremediation; types of bioremediation (Natural, solid phase, slurry phase and bioventing); applications of bioremediation; Bioremediation efficacy testing; Approaches to bioremediation; Role of microbes in biodegradation of xenobiotic compounds:- halocarbons, polychlorinated biphenyls, alkyl benzyl sulfonates and oil mixtures, biodegradation of pesticides, enzyme catalyzed pesticide degradation reactions. Biosorption, biomineralisation & bioleaching, mechanisms of bioleaching, Bio indicators, Biomarkers and Biosensors in waste treatment.	17	1

Online

Prof. Kamlesh. K. Shrivas,

Chairman

Prof. P. K. Behera (External

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna

Dr. Bhanushrre

51| Page Online

dubey (member)

Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member)

Dr. Indrapal Dr. Anand Kamavisdar (Member Karbhal from DST)

II	Bioremediation of Contaminated Sites, Wastelands and	20	2
	Industrial Wastes		
	Bioremediation of contaminated soils (natural attenuation and in-situ subsurface bioremediation) and aquifers (Root Zone Technology) bioremediation in aquaculture, Bioremediation of industrial wastes (distillery, pulp and paper, tannery, textile and dye, dairy and food processing). Phytoremediation (phytoextraction, phyto-stabilization, phytovolatilaztion, rhizodegradation and rhizofilteration), phytoremediation of inorganic, metallic and organic pollutants in contaminated sites, bioremediation of problematic soil.		
III	Biotechnology for Air and water Pollution Abatement Air Pollution abatement: Bio-scrubber and Bio-filter, Water Pollution Abatement: Aerobic (Activated Sludge Process, Career advanced Activated Sludge Process, Biological Filters ,Rotating Biological Contractors, Fluidized Bed Reactors, Inverse Fluidized and Bed Biofilm Reactor, Expanded Bed Reactor) Anaerobic Biological Treatment (Contact digester, Packed bed or Packed Volume Reactor, Anaerobic baffled digester, Up flow anaerobic sludge blanket reactors), Membrane Bioreactor and Biocatalyst.	18	3
IV	Biotechnology for Solid Waste Management	20	4
	Potential availability and composition of crop residues and other solid organic wastes. Principles of microbial Composting, Factor influencing composting. Methods of composting (aerobic and anaerobic). Vermicomposting. Method of vermicomposting Changes during vermicomposting, aquatic plant, organic wastes and energy crops for biogas, alcohol and hydrogen production using microorganisms, bioconversion of agricultural, Sewage sludge, Paper waste, sugar mill wastes, tannery sludge) to feed stuffs and fertilizers.		

Books & References

- 1. Wastewater Engineering Treatment disposal Reuse Metacalf & Eddy Inc. 4th ed TMGHI, New Delhi, 2003
- 2. Environmental Engineering Peavy, HS, Donald RR & G Tchobanoglous MGH Int. Ed. New York 1985

52| Page

Online

Prof. Kamlesh. K. Shrivas, Prof. P. K. Behera (External Chairman

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. (Member) Dr. Indrapal Dr. Anand Kamavisdar (Member Karbhal from DST) (Member)

Online

- 3. Wastewater Treatment for Pollution Control Soil J Arceivala, Tata Mc Graw Hill 2nd ed. 1998
- 4. Wastewater Treatment Plants: Planning, Design and Operation- S.R. Qasim, Holt, Rinehart & Winston, 1985
- 5. Industrial Water Pollution Control WW Eckenfelder, Jr. McGraw Hill 2nd Edition NY 1989
- 6. Sewage Disposal and Air Pollution Engineering, S.K. Garg, Khanna Publisher
- 7. Waste Water Engineering, G.L Karia & R.A Christian, Prentice Hill Publication, 2nd Edition, 2006.
- 8. Microbial Methods for Environmental Biotechnology: Grainer, J.M. and Lynch, J.M. 1984. Academic Press.
- 9. Methods in Biotechnology: Hans Peter Schmauder
- 10. Global environmental Biotechnology: D. L. Wise
- 11. Basic environmental technology: Jerry A. Nathanson.
- 12. Basic Biotechnology Ed. Colin Ratledge & B Jorn Kristiasen, Cambridge.
- 13. Environmental Biotechnology S.K. Agarwal, APH
- 14. Managing Industrial Pollution S.K. Bhatia, MacMillan
- 15. Biological and Biotechnological control of insect Pests, Rechcigl and Rechcigl, Lewis
- 16. Hand book of Bioremediation, Norris et al., Lewis
- 17. Micro-organism in Action: Lynch & Hobbie
- 18. Soil Biotechnology: Lynch Blackwel
- 19. Waste Recycling for energy conversion: Kutand and Hare, Johnwiley and Sons, N Y.
- 20. Refuse Recycling: Holms, John wiley & Sons, New York

M.Sc. (Environmental Science) Semester-III

Program	Subject	Year	Semester
M.Sc.	Environmental Science	II	III
Course Code	Course	Course Type	
ENV305	LAB W	CORE	
Credit	Н	ours Per Week (L	L-T-P)
	L	Т	P
2+1	-	-	10
Maximum Marks	CIA		ESE
100	25		75

53 | Page

Qhline

K. Shrivas.

Prof. P. K. Behera (External

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member)

Dr. Bhanushrre (Memebr)

Dr. Ajita Dixt

Shri H Deshmukh (Member)

Shri B. L (Member)

Dr. Indrapal Karbhal

Online

Learning Objective (LO):

The course aims to equip students with a deep understanding and knowledge of advanced practical concepts related to air, water, soil, etc. particularly in groups and field theory, and empower them to apply this knowledge to solve various environmental problems and engage with higher-level research.

Course Outcome (CO):

CO	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to:	
1	Determination & Identification of gram positive and gram negative bacteria.	Ap
2	Experiencing experimental procedures of bacteriological analysis of wastewater.	Ap
3	Understanding of heavy metal analysis in water.	U
4	Development of analytical skills for COD, BOD & TOC determination.	An

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; A- Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

PO					PSO											
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	-	1	-	3	1	-	-	-	3	1	-	-	-
CO2	3	3	3	1	1	1	3	-	-	-	-	3	2	-	-	3
CO3	3	3	3	1	1	1	3	-	-	2	-	3	2	-	-	2
CO4	3	3	3	1	1	2	3	1	-	2	1	3	2	-	-	-

[&]quot;3" - Strong; "2" - Moderate; "1"- Low; "-" No Correlation

54| Page

Online

Qhline Qhline

Prof. P. K. Behera K. Shrivas. (External

(member)

Prof. Kallol K.

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L.

(Member)

Dr. Anand Kamavisdar Dr. Indrapal Karbhal (Member from DST)

DETAILED SYLLABUS

Topics	No. of	СО
	Lectures	No.
Gram staining techniques for detection of gram positive and	40	1
gram-negative bacteria.		
Bacteriology of drinking water and domestic sewage -MPN	40	2
techniques for total coliform, Faecal coliform and Faecal		
Streptococci (FS)		
Determination of heavy metal such as Zn, Ni, Fe, Pb and Cr by	35	3
Atomic absorption spectroscopy (AAS) in municipal		
wastewater.		
Determination of Chemical Oxygen Demand, TOC & BOD of	35	4
given wastewater sample.		
	Gram staining techniques for detection of gram positive and gram-negative bacteria. Bacteriology of drinking water and domestic sewage -MPN techniques for total coliform, Faecal coliform and Faecal Streptococci (FS) Determination of heavy metal such as Zn, Ni, Fe, Pb and Cr by Atomic absorption spectroscopy (AAS) in municipal wastewater. Determination of Chemical Oxygen Demand, TOC & BOD of	Gram staining techniques for detection of gram positive and gram-negative bacteria. Bacteriology of drinking water and domestic sewage -MPN techniques for total coliform, Faecal coliform and Faecal Streptococci (FS) Determination of heavy metal such as Zn, Ni, Fe, Pb and Cr by Atomic absorption spectroscopy (AAS) in municipal wastewater. Determination of Chemical Oxygen Demand, TOC & BOD of 35

^{*}Some advanced level sophisticated instrument based (FTIR, GC-MS, AAS, Ion Chromatography etc.) experiments may be given to the students.

* *Internship of 60 Hours (select only one: ENV305 or ENV306) will be guided by the **Mentor Faculty**

M.Sc. (Environmental Science) Semester-III

Program	Subject	Year	Semester						
M.Sc.	Environmental Science	II	III						
Course Code	Course	Course Title							
ENV306	LAB W	LAB WORK-6							
Credit	Н	ours Per Week (L	-T-P)						
	L	Т	Р						
2+1	-	-	10						
Maximum Marks	CIA	ESE							
100	25		75						

Prof. P. K. Behera (External K. Shrivas.

Prof. Kallol K. (member)

(Member)

Prof. Shamsh (Member)

Dr. Karuna

55| Page Online Online

Prof. M. K.

(member)

Dr. Bhanushrre (Memebr)

Dr. Ajita Dixt (Member) Shri H.

(Member)

Shri B. L. (Member)

Dr. Anand Kamavisdar Indrapal Karbhal (Member from DST)

Learning Objective (LO):

The course aims to equip students with a deep understanding and knowledge of advanced practical concepts related to air, water, soil, etc. particularly in groups and field theory, and empower them to apply this knowledge to solve various environmental problems and engage with higher-level research.

Course Outcome (CO):

CO	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to:	
1	Statistical Analysis and research application by using mean, median, mode, Standard deviation & Relative Standard Deviation.	Ap
2	Development of deeper understanding of concepts of essential oils, its extraction & its medicinal use.	Ap
3	Understanding the concept of transesterification & esterification.	U
4	Analysis of energy content and fertilizer content of biodegradable waste and its management.	An

CL: Cognitive Levels (**R**-Remember; **U**-Understanding; **Ap**-Apply; **A-** Analyze; **E**-Evaluate; **C**-Create).

CO-PO/PSO Mapping for the course:

56| Page

PO					PSO											
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	-	1	-	3	1	-	-	-	3	1	-	-	-
CO2	3	3	3	1	1	1	3	-	-	-	-	3	2	-	-	3
CO3	3	3	3	1	1	1	3	-	-	2	-	3	2	-	-	2
CO4	3	3	3	1	1	2	3	1	-	2	1	3	2	-	-	-

[&]quot;3" - Strong; "2" - Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Uni	Topics	No. of	CO
t		Lectures	No.
No.			
I	To determine mean, median, standard deviation, relative	40	1
	standard deviation of weight box & 10 mini bottles.		

Ohline

Prof. P. K. Behera (External K. Shrivas.

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh (Member)

Dr. Karuna

Online

(member) (Memebr)

Dr. Bhanushrre Dr. Ajita Dixt

Shri H. (Member)

Shri B. L. (Member)

Dr. Anand Kamavisdar Indrapal Karbhal (Member from DST)

2	To Determine the Oil % of given leaf sample by using	40	2
	Clevenger Apparatus (Heavier than Water & Lighter than		
	water).		
3	Formation of Biodiesel by using using used oil through transesterification and formation of soap & handwash liquid.	35	3
4	Production of biogas and organic manure by using biodegradable waste materials by using mini biogas plant.	35	4

^{*}Some advanced level sophisticated instrument based (FTIR, GC-MS, AAS, Ion Chromatography etc.) experiments may be given to the students.

* *Internship of 60 Hours will be guided by the Mentor Faculty

1. Share phline

Prof. Kamlesh. K. Shrivas, Chairman

(member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna

Online

Prof. P. K. Behera (External

Prof. Kallol K. Ghosh

dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member)

Dr. Indrapal Karbhal

M.Sc. (Environmental Science) Semester-IV

Program	Subject	Year	Semester	
M.Sc.	Environmental II Science		IV	
Course Code	Course	e Title	Course Type	
ENV401	ENVIRONMENTAL IN ENVIRONMENTA ENVIRONMENTA SYSTEM STANDA EM			
Credit	Н	ours Per Week (L	-T-P)	
	L	L T		
5	5 -		-	
Maximum Marks	CIA	CIA ESE		
100	25	75		

Learning Objective (LO):

The course aims to equip students with a deep understanding of advanced environmental impact concepts, particularly in groups and field theory, and empower them to apply this knowledge to solve various environmental management system standards problems and engage with higher-level research problems.

Course Outcome (CO):

CO No.	Expected Course Outcomes	CL
110.	At the end of the course, the students will be able to :	
1	After studying this unit students will be able to understand the nexus between environment & development, Origin & development of EIA and overall EIA process.	Ap
2	Understanding about the Case Studies on EIA of different projects & industries.	Ap
3	Understanding about the concept of environmental audit, audit methodology, audit report audit assessing, economic & environmental benefits direct from environmental audit, life cycle assessment.	U

Online

Kamlesh.

Prof. P. K. Behera (External K. Shrivas.

(member)

Prof. Kallol K.

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member)

Dr. Bhanushrre (Memebr)

Online Onli 58 | Page Online

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. (Member) Dr. Indrapal Karbhal (Member)

4	Understanding about the Environmental Management System Standards, EMS standard (ISO 9000 & 14000 series), evolution, principles and structure, supporting	An
	systems, EMS specification standards & Certification procedures.	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; A- Analyze; E-Evaluate; C-Create)

CO-PO/PSO Mapping for the course:

PO		POs											PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	3	1	3	3	1	3	3	3	3	1	3	3	3
CO2	3	3	3	1	1	1	3	3	3	3	3	3	2	3	3	3
CO3	3	3	3	1	1	1	3	3	3	2	3	3	2	3	2	3
CO4	3	3	3	1	1	2	3	1	3	2	1	3	2	3	2	3

[&]quot;3" - Strong; "2" - Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

	DETITIED STEEMES		2.0
Unit	Topics	No. of	CO
No.		Lectures	No.
I	Origin and Development of EIA	20	1
	Nexus between Development and Environment, Comparison		
	between economic and Ecological criteria, Concept of		
	externalities, shared resources, Global commons & carrying		
	capacities. Origin and Development of EIA. Relationship of		
	EIA to sustainable Development. EIA in Project planning &		
	Implementation, EIA process: Evaluation of proposed action,		
	Scoping, EIA methodologies. Role of GIS in EIA baseline studies. Risk Assessment and Risk Management: Mitigation		
	measures, comparison of alternatives, Reviews and decision		
	making, compensatory actions, EIA notifications/regulations in		
	India, Green belts: Review of Procedure, Practices and		
	guidelines in India. EIA vs. SEA, Carrying capacity,		
	Cumulative Impact assessment.		
II	Case Studies on EIA	17	2
	EIA of (a) River valley Projects, (b) Thermal Power Plants, (c)		
	Mining Projects, (d) Integrated Iron and Steel Industries, (e)		
	Cement Industries, (f) Oil Refineries and Petrochemicals,		
	(g)Tourism, (h)Coastal zone Development.		

Prof. P. K. Behera Kamlesh. K. Shrivas, (External

Prof. Kallol K. Ghosh (member)

(Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre

Dr. Ajita Dixt (Member)

Shri B. L. Yadaw

(Member)

Karbhal (Member

III	Environmental Audit Concept of Environmental Audit, Objectives of Audit, Types of Audit, Audit methodology, Features of effective auditing, Elements of audit process, Program Planning, Organization of auditing Program, Pre-visit data collection, Audit Protocol, On site audit: Data sampling, Inspection, Evaluation and Presentation, Audit report, Action Plan, Management of audit, Waster audits and pollution prevention assessment, Liability audit and site assessment, auditing of EMS, SWOT Analysis (Strength, Weakness, Opportunities and Threats analysis) for EIA, Audit Assessing, Economic & Environmental benefits direct from Environmental Audit, Life Cycle Assessment	20	3
IV	Environmental Management System Standards Core elements of EMS, Benefits of EMS, Certification Body Assessment of EMS, Documentation for EMS, EMS standard (ISO9000 & 14000 series): evolution, principles and structure, supporting systems, EMS specification standards & Certification procedures, EMS specification standards:ISO14001, Benefits of Implementing ISO 14001: Indian scenario.	18	4

Books and references:

- Environmental Impact Assessment: Canter, L.W. 1977. Mc Graw Hill, New York 1.
- 2. Environmental Impact Assessment Methodologies: Anjaneyulu Y. and Minickam V., BS Publications, Hyderabad
- 3. Manual of Environmental Impact Evaluation-Rosen JJ 1976 Prentice Hall
- A practical guide to Environmental Impact Assessment, Erickson, P.A., Academic Press 4.
- 5. Environmental Impact Analysis Hand book Rao & Woolen (eds) 1980 Mc Graw Hill
- Environmental Quality Management: Bindu N Lohani 1984, South Asia Publ. 6.
- 7. Environmental Impact Assessment: Alan Gilpin 1995, Cambridge Univ. Press
- 8. Manual of Environmental Impact Evaluation-Sharma, J. Rosen. Prentice Hall
- 9. Current documents on guidelines of EIA, MOEF, Govt. of India.
- 10. Strategic Environmental Assessment. R. Therirvel, E. Wilson, S. Thampson, D. Heany & D. Pritchard.
- Environmental Impact Assessment- Cutting edge by 21st century- Cutting edge by Alan 11. Gilpin, Cup, London

Online

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member)

Dr. Bhanushrre

Dr. Ajita Dixt

Shri H. (Member) Shri B. L.

Dr. Dr. Anand Indrapal Kamavisdar

Online

Prof. P. K. Kamlesh. Behera (External K. Shrivas.

(Memebr)

(Member)

Karbhal (Member from DST)

- 12. Environmental Impact Assessment & Practice- Theory, P. Wathem, U. Hynman, Sydney
- 13. A Practical Guide to Environmental Impact Assessment – Paul A Erickson Academic
- Planning and Implementation of ISO 14001, Environmental Management system-Gyapi & a g e 14 Amit Lunia, Girdhar Raj Publ, House Jaipur.
- 15. A guide to the implementation of the ISO 14000 series on Environmental Management-Ritchie I and Hayes co Prentic Hall, New Delhi.
- 16. Environmental Management, Kulkarni, V. and Ramachandra, T.V., TERI press, New Delhi, 2009
- 17. Uberoi, N.K. (2010). Environmental Management, Excel Books, New Delhi.
- 18. ISO 14004 – Environmental management systems: General guidelines on principles, systems and supporting techniques (ISO 14004: 1996 (E)).
- 19. Environmental management systems: Specification with guidance for use (ISO 14001 : 1996b (E)). (International organization for standardization – Switzerland).
- 20. Handbook of environmental management and technology: Gwendolyn Holmes, Ben Ramnarine Singh, Louis Theodore.
- Environmental Impact Assessment, L. W. Canter, Mc Graw Hill Publication, New 21. York.

W. Shankolog attine

Prof. P. K. Behera (External K. Shrivas.

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt

Shri B. L. (Member) Dr. Indrapal Karbhal

Online

Dr. Anand Kamavisdar (Member from DST)

Online

(member)

Shri H. Deshmukh (Member)

Program	Subject	Year		Semester
M.Sc.	Environmental Science	II		IV
Course Code	Course	e Title		Course Type
ENV402	ENVIRONMENTAL I SOC	ND	CORE	
Credit	Н	ours Per Week (I	Т-Р)	
	L	Т		Р
5	5	-		-
Maximum Marks	CIA		ESE	
100	25	25 75		

Learning Objective (LO):

The course aims to equip students with a deep understanding of advanced algebraic concepts, particularly in groups and field theory, and empower them to apply this knowledge to Understanding judicial response to environmental issues in India. - Knowing about importance of public participation through Right to information, Public Interest Litigation and other remedies in preserving and protecting environment.

Course Outcome (CO):

CO	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to :	
1	Learn the laws and policies related to environment. They will understand the power,	Ap
	function and responsibilities of central board and state board with respect to the	
	environment	
2	Understand and interpret the structure of environmental laws as well as judgments of	Ap
	appellate courts in cases pertaining to the environment. Explain concepts that are	
	central to environmental governance, including participation, common property	
	resources and decentralisation.	
3	It addresses a myriad of issues, including air and water quality, land use, wildlife	U
	protection, climate change mitigation, and waste management. By establishing legal	
	mechanisms to manage human activities that impact the environment, it aims	
	to strike a balance between economic progress and environmental protection.	

Ohline

Prof.

Kamlesh.

K. Shrivas.

Chairman

Prof. P. K. Behera (External

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Online Online

Shri H. Shri B. L. Deshmukh (Member) (Member)

Dr. Anand Kamavisdar Indrapal Kamavisd Karbh**62** | P(Meraber

4	They will learn the constitutional provisions in India, national and international	An
	trends. The goal of environmental law is to safeguard both the natural world and	
	public health from the damaging impacts of human activity. This course is designed	
	to provide knowledge and training to candidates to understand the legal aspects of	
	environmental protection and legal measures to safeguard the natural resources.	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; A- Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

	11 8															
PO		POs										PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
C01	3	3	3	2	1	2	3	1	3	3	3	3	1	2	2	3
CO2	3	3	3	1	1	1	3	2	3	3	3	3	2	2	2	3
CO3	3	3	3	1	1	1	3	2	2	2	2	3	2	2	2	2
CO4	3	3	3	1	1	2	3	1	1	2	1	3	2	2	2	3

[&]quot;3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit No.	Topics	No. of Lectures	CO No.
I	Water, Air, Forest and Wildlife Act	25	1
	Constitution of Central and State Pollution Control Boards, Power, Function and responsibility of Central and State Boards (Objectives, Area of jurisdiction, responsibility of an industry, power and function of state and central Government, Cognizance of offence, Penalties and Punishment), Brief account of The Forest Act 1927, Forest conservation Act. 1980: Objective and Jurisdiction, Responsibility of Industry. Wildlife Protection Act 1972.		
II	The Environment Protection Act 1986	20	2
	Necessity and Scope of the Environmental Protection Act, Powers of the Central Government, Parallel Provisions with the water and the Air act, The Public Liability Insurance Act 1991, Biomedical waste (Handling and Disposal) rules 1998. Recycled plastic manufacture and usage rules 1999, Municipal Solid Waste (Management and Handling) Rules 2000, The Noise Pollution (Regulation and Control) Rules 2000, Environmental Impact Assessment Notification 2006, e-wastes Management and Handling Rules 2011		

Prof. M. K. Deb

Prof. Shamsh

Dr. Karuna

Dr. Bhanushrre

Dr. Ajita Dixt (Member)

Online Online

63| Page

Prof. P. K. Behera Kamlesh. K. Shrivas, (External

Prof. Kallol K. Ghosh (member)

(Member)

Pervez (Member)

dubey (member)

Gupta (Memebr)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member) Dr. Indrapal Karbhal

III	Environmental Policies	24	3
	Environment and constitutional provisions in India, National & International Trend. Changes in Global Prospective, Brief Note on Stockholm Conference 1972, Nairobi Declaration, Rio (Brazil) conference 1992, Kyoto Protocol, Johannesburg Conference 2002 National Authorities: Global environmental issues and international policies relating to control Global warming, Ozone depletion, hazardous waste, CITES etc.		
IV	Economics, Society and Environmental Ethics Human impact on the Earth, Hunting and Gathering Society, Agriculture Society, Industrial Society, Sustainable -Earth Society: Concept of throw-away and sustainable -Earth Society, our future society; Environmental Ethics: Ethics and moral, ethics of Throw-away & Sustainable-Earth Society.	18	4

Books and References

- 1. Hand Book of Environment, Forest and Wild life laws in India, WPSI, Natraj
- 2. Pollution Control Acts, rules and Notifications issued under CPCB, New Delhi
- 3. Environmental Laws, New Perspectives, K. C. Agrawal, Nidhi Publisher, Bikaner
- 4. Wildlife of India, Conservation and Management, K. C. Agrawal, Nidhi Publisher
- 5. Environmental laws in India, Gurdip Singh, Quality Law Books
- The Economics of the Environment, Oates W.E.
- 8. Kanchan Chopra, et al., Ecological Economics and Sustainable Development
- 9. Economy and the Environment, Goodstein
- 10. Sumi Krishna: Environmental Politics, Peoples' Lives and Developmental Choices, Sage, New Delhi, 1996
- 11. Cone J.D., Hayes S.C., Environmental Problems / Behavioral Solutions (1980) California
- 12. Declaration of The Stockholm Conference, Rio
- 13. Constitution of India [Referred articles from Part-III, Part-IV and Part-IV-A].

Prof. P. K. Behera (External K. Shrivas.

(member)

Prof. Kallol K.

Prof. M. K. (Member)

Prof. Shamsh (Member)

Dr. Karuna (member)

Dr. Bhanushrre

(Memebr)

Online Online

Dr. Ajita Dixt

Shri H. (Member)

Shri B. L (Member)

Indrapal Karbhal

M.Sc. (Environmental Science) Semester-IV

Program	Subject	Year		Semester	
M.Sc.	Environmental Science	II		IV	
Course Code	Course	Title		Course Type	
Course Code	Course	/ Title		Course Type	
ENV403	REMOTE SE		CORE		
Credit	H	Iours Per Week (L-	-T-P)		
	L	T		P	
5	5	-		-	
Maximum Marks	CIA	CIA			
100	25		75		

Learning Objective (LO):

The course aims to equip students with a deep understanding of remote Sensing technologies & geographical information system, and empower them to apply this knowledge in image processing, land use and land cover mapping, and environmental resource studies.

Course Outcomes (CO):

СО	Expected Course Outcomes	CL
No.	At the end of the course, the students will be able to:	
1	Understand the remote sensing science & technology, interaction of energy with atmosphere and with earth surface features, interpretation of satellites and top sheet maps.	U
2	Students will understand the basic concept of remote sensing and know about the different types of platform, satellites, sensors & scanners, aerial photography, Indian scenario of remote sensing.	Ap
3	Student will understand the concept of digital image processing and learn about the visual photo interpretation techniques, image enhancement and restoration.	Ap
4	Understand the basic concept of GIS and its application, and learn about the GIS system hardware, software & infrastructure, and different types of data representation in GIS.	An

CL: Cognitive Levels (**R**-Remember; **U**-Understanding; **Ap**-Apply; **An**-Analyze; **E**-Evaluate; **C**-Create).

Online Charles

Prof. Prof. P. K. Kamlesh. Behera K. Shrivas, (External Chairman member Prof. Kallol K. Ghosh (member) Prof. M. K. Deb (Member) Prof. Shamsh Pervez (Member) Dr. Karuna dubey (member) Dr. Bhanushrre

(Memebr)

1 0.5°

Dr. Ajita Dixt Shi (Member) De

10/05/

69pline g Online

Dixt Shri H.
) Deshmukh
(Member)

Shri B. L. Yadaw (Member) Dr. Dr. Anand Indrapal Kamavisdar Karbhal (Member (Member) from DST)

CO-PO/PSO Mapping for the course:

	PO		POs										PSO				
\downarrow	CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
	CO1	3	3	3	2	2	2	3	1	1	2	3	3	1	2	2	3
Ī	CO2	3	3	3	3	2	1	3	-	-	2	2	3	2	1	2	3
Ī	CO3	3	3	3	3	2	2	3	1	1	2	2	3	2	2	3	2
Ī	CO4	3	3	3	3	2	3	3	1	2	2	3	3	2	2	3	3

[&]quot;3" - Strong; "2" - Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit	Topics	No. of	СО
No.		Lectures	No.
I	Introduction to Remote sensing Science & Technology Introduction to Remote sensing Science & Technology: Principles of Remote sensing, Physical basis of Remote sensing. The nature and generation of Electromagnetic radiation (EMR). Interaction of EMR with the atmosphere and earth's surface features. Spectral signatures and characteristic spectral reflectance curves for rocks, soil,	15	1
	vegetation and water. Spectral quantities. Far and near infrared and microwave remote sensing.		
П	Remote Sensing Observation and Platforms Remote Sensing Observation and Platforms: Air borne and space borne platforms, their relative importance and applications, Orbital geometry. Remote Sensing Satellites. Sensors, Aerial cameras and type of aerial photography, Photo scale and photo elements, Single and multiband scanners MSS sensor and other type of sensors. Aerial Stereo coverage and. Details of sensors on board. Hyperspectral imaging, RADAR and LIDAR techniques, Indian scenario of remote sensing.	20	2
III	Introduction to Digital Image Processing Digital image processing: Introduction to digital structure and data recording format sets. Visual Photo-Interpretation Techniques based on Photo elements and Terrain elements, Image Restoration, Enhancement and classifications, Significance of Ground Truths and Training Sets in Image Processing and in automated processing.	15	3
IV	Principle of Geographic Information System Geographic information system: Introduction, Definition and Terminology, Map Protection and Coordinate system, GIS	25	4

W. Share Online

Stex J.

1

M 2024

10/5/24

5.24 A Tosks

2024 0010

66 | Page

Prof. Kamlesh. K. Shrivas, Prof. P. K. Behera (External member Prof. Kallol K. Ghosh (member)

. Prof. M. K. Deb (Member) Prof. Shamsh Pervez (Member) Dr. Karuna dubey (member) Dr. Bhanushrre Gupta (Memebr) Dr. Ajita Dixt (Member) Shri H. Deshmukh (Member) Shri B. L. Yadaw (Member) Dr. Dr. Anand Indrapal Kamavisdar Karbhal (Member (Member) from DST) system hardware, software and infrastructures. components of GIS software. Data structures. Data models, Data acquisition, Data Input and Data processing and management including topology, TIN model, DEM/DTM generation, overlying and Integration and final data product and report generation Integration of Remote sensing and GIS techniques and its applications in land use/land cover and Environmental resource studies.

Books and references

- 1. Remote Sensing and GIS, Angi Reddy, The Books Syndicate, Hyderabad, 2000
- 2. Principles of Geographical Information Systems- P. A Burrough and R. A. Mc Donnel, OUP, Oxford, 1998.
- 3. Remote sensing for Earth Resource-Rao, D. P., AEG Publication, Hyderabad, 1987.
- 4. Geographical Information System-Kang Tsung Chang, Tata Mc Graw Hill, Publication Edition, 2002
- 5. Remote Sensing and Its Application –LRA Narayan University Press
- 6. Remote Sensing and GIS- Basudeb Bhatta Oxford University Press, 09-Oct-2011 - 752 pages
- Remote Sensing of the environment, John R. Jensen, Dorling Kindersley India, Pvt. Ltd. 2009 592 7. pages
- 8. Remote sensing and image interpretation, Thomas M. Lillesand, Ralph W. Kiefer, Jonathan W. Chipman

67 | Page

W. Shantalog attine

Prof. P. K. Behera (External

Dr. Anand Kamavisdar (Member

Online

Prof. Kallol K. Prof. M. K. Prof. Shamsh Dr. Karuna Dr. Bhanushrre Dr. Ajita Dixt Shri H. Shri B. L. Deshmukh Indrapal (Member) (member) (Memebr) K. Shrivas. (member) (Member) (Member) (Member) Karbhal from DST)

M.Sc. (Environmental Science) Semester-IV

Program	Subject	Year		Semester		
M.Sc.	Environmental Science	II		IV		
Course Code	Course	Title		Course Type		
ENV404	ENVIRONMENTAL I	ENVIRONMENTAL DISASTER AND RISK				
Credit	Н	ours Per Week (L	-T-P)			
	L	Т		P		
5	5	-		-		
Maximum Marks	CIA		ESE			
100	25	75				

Learning Objective (LO):

The course aims to equip students with a deep understanding of advanced concepts related to the environmental disasters, particularly in groups and field theory, and empower them to apply this knowledge to solve Environmental problems and engage with higher-level research.

Course Outcome (CO):

60		CI
CO	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to :	
1	Students will able to understand Difference between hazard risk and disaster, its	Ap
	cycle and prediction, its mitigation technique etc. Understand the natural	•
	environment and its relationships with human activities	
2	Earthquake, volcanoes and its different zones, its prediction and mitigation	Ap
	techniques and other mass movements like landslide rock fall etc.	1
	techniques and other mass movements like fandshide fock fan etc.	
3	Characterize and analyze human impacts on the environment. Integrate facts,	U
	concepts, and methods from multiple disciplines and apply to environmental	
	problems	
	1	
4	Develop a deep understanding of disaster resilience, risk mitigation, and recovery	An
	policies as they arise from natural hazards around the globe.	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; A- Analyze; E-Evaluate; C-Create).

68 | Page

(Member from DST)

Online

Prof. P. K. Behera K. Shrivas. (External

(member)

Prof. Kallol K.

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. (Member)

Shri B. L. (Member)

Dr. Anand Kamavisdar Dr. Indrapal Karbhal

CO-PO/PSO Mapping for the course:

PO		POs										PSO PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	2	1	2	3	1	2	-	-	3	1	-	-	-
CO2	3	3	3	1	1	1	3	2	-	-	-	3	2	-	-	3
CO3	3	3	3	1	1	1	3	2	-	2	-	3	2	-	-	2
CO4	3	3	3	1	1	2	3	1	-	2	1	3	2	-	-	-

[&]quot;3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation

DETAILED SVLLARUS

	DETAILED SYLLABUS		
Unit	Topics	No. of	CO
No.		Lectures	No.
I	Hazard, Risk and Disaster Hazard in the Environment, the concepts of hazard, risk and disaster, Human vulnerability to hazard, Disaster trends, complexity in hazard and disaster, Hazard zoning and risk assessment, Environmental Security and Hazards Zoning, hazard zoning maps & preparedness plan. Risk Assessment management: Disaster management cycle, Hazards vs. Risk, Evaluation of Risk, Strategies for Hazard Mitigation: Priorities, Prediction, warning & Public information, Minimizing the probability of hazards, Public policy for hazard management.	17	1
II	Earthquakes, Volcanic and Mass movement Hazards Origin of Earthquake, its magnitude and intensity, Earthquake prone zones in the Earth, Reservoir induced seismicity, effects of earthquake, stability of structure & Risk Assessment, coping with seismic hazards, seismic zoning map, seism tectonic map, earthquake prediction & control. Types of volcanic eruptions, Active volcanic belts in the world, nature and magnitude of volcanic hazards, prediction of volcanic eruptions, mitigation of volcanic hazards. Mass movement hazards: Landslides, Rock fall, snow avalanche hazards with some case studies.	19	2
III	Floods, Cyclones, Tornados and Tsunamis Floods and flood management, causes of excess flows, reduced carrying capacity of rivers, Runoff versus infiltration, sediment load & changing course of rivers, management of floods strategy, treatment of watersheds, reservoir &detention basis, water spreading, ground water recharge, stream channelization,	19	3

Online Option

Prof. Kamlesh. K. Shrivas,

Chairman

(External

Prof. P. K. Behera

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Bhanushrre Gupta (Memebr)

69| Page

Dr. Karuna dubey (member)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member) Dr. Indrapal Karbhal (Member)

	flood embankments, flood plain zoning, flood forecasting & warning. Regions of flood prone zones in India. Origin of cyclones, tornados and tsunamis, their severity and impacts, coastal hazards mitigation measures.		
IV	Technological hazards: Nature and Definition of Technological Hazards Concepts of industrial pollution, nuclear radiation, toxic wastes, dam failures, transport accidents, factory explosions, fires, chemical spills, and technological hazards as a result of the impacts of a natural hazard. The growth of industrial hazard, Some case studies of Technological Disasters like Bhopal gas Tragedy 3 December, 1984, Chernobyl Nuclear accident 1986, Minnamata Japan, Japan's earthquake- tsunami- Fukushima nuclear disaster: 2011	20	4

Books and references:

- 1. Environmental Hazards: assessing risk and reducing hazards, Smith, K. and Petley, D.N. Routledge publication, London.2009, p.383.
- 2. Atmosphere, weather and climate, a textbook on climatology, Siddhartha, K. Kisalaya Publications Pvt. Ltd. New Delhi, 2000, p. 511
- 3. Environmental Geology, Valdiya K.S., Tata Mc-Graw Hill, 1987, p.
- 4. Landslide risk assessment, Lee E.M. and Jones D.K.C., Thomas Telford, 2004, p. 454
- 5. Environmental Geoscience: interaction between Natural Systems and Man, Strahler, A.N. and S Trahler A.H., Hamilton Publishing Company, California, p.511.
- 6. The nature of the Environment, Goudie, A., Blackwell Publications, 2001, p.544.
- 7. Living with Risk: The Geography of Technological Hazards by Susan L. Cutter (Jun 15, 1993)
- Technological Disasters, P.C. Sinha, Anmol Publications Pvt. Limited, 1998 516 pages
- Earthquakes and Tsunamis in the Past: A Guide to Techniques in Historical Seismology, E. Guidoboni and John E. Ebel, Cambridge University Press, 2009.
- 10. Earth quakes: Bruce A. Bolt
- 11. Elementary Seismology: Charles F. Richter

70| Page

Online

Prof. P. K. Behera K. Shrivas. (External

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh (Member)

Dr. Karuna (member)

Dr. Bhanushrre (Memebr)

Dr. Ajita Dixt

Shri H. (Member)

Shri B. L (Member) Indrapal Karbhal

Online

M.Sc. (Environmental Science) Semester-IV

Program	Subject	Year		Semester				
M.Sc.	Environmental Science	II		IV				
Course Code	Course	Course Title						
ENV405	RESEARCH PROJEC	CT/DISSERTATION RESEARC PROJECT						
Credit	Н	ours Per Week (L	T-P)					
	L	Т		Р				
5	-	-		10				
Maximum Marks	CIA			ESE				
100	25			75				

Learning Objective (LO):

The course aims to equip students with a deep understanding of advanced concepts, particularly in groups and field theory, and research empower them to apply this knowledge to solve environmental problems and engage with higher-level research.

Course Outcome (CO):

СО	Expected Course Outcomes	CL
No.	At the end of the course, the students will be able to :	
1	Development of deeper understanding of concepts	Ap
2	Experiencing experimental procedures directly and Development of thinking skills (critical, quantitative and qualitative)	Ap
3	Development of data analysis skills and Development of communication skills, including those involved in working in groups	U
4	They will experience outdoor sampling methods and experimentation and Learn to Use equipment in public places	An

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; A- Analyze; E-Evaluate; C-Create).

71| Page

Online

Prof. P. K. Behera K. Shrivas. (External

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre (Memebr)

Dr. Ajita Dixt (Member)

Online

Shri H. Deshmukh (Member)

Shri B. L. (Member)

Indrapal Karbhal

CO-PO/PSO Mapping for the course:

PO						PSO										
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	2	1	2	3	1	3	2	1	3	1	3	3	2
CO2	3	3	3	1	1	1	3	2	1	2	3	3	2	3	3	3
CO3	3	3	3	1	1	1	3	3	2	2	3	3	2	3	3	2
CO4	3	3	3	1	1	2	3	1	1	2	1	3	2	3	3	1

[&]quot;3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit	Topics	No. of	СО
No.		Lectures	No.
	Review or case studies on detection, determination, mapping, sources and control of environmental contaminants.	150	1

72 | Page

Online

Qhline

Prof. Kamlesh. K. Shrivas, Prof. P. K. Behera (External

Prof. Kallol K. Ghosh (member)

Prof. M. K. Deb (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna dubey (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh (Member)

Shri B. L. Yadaw (Member)

Dr. Indrapal Karbhal

Dr. Anand Kamavisdar (Member from DST)

Online

M.Sc. (Environmental Science) SEMESTER-II

Program	Subject	Year	Semester					
M.Sc.	Environmental Science	I	П					
Course Code	Course	Course Title						
ENV501		HODOLOGY AN REPORT FOR ITAL SCIENCE	ND Value added					
Credit	H	Iours Per Week (L	-T-P)					
	L	Т	P					
2	2	-	-					
Maximum Marks	CIA		ESE					
100	25	75						

Learning Objective (LO):

The aim of this course is to make students proficient in understanding of advanced applications in biotechnology including bioremediation, phytoremediation, biotechnology for air & water pollution and solid waste management. Through this knowledge, they will develop a strong foundation in practical application of biotechnology to addresses environmental problems.

Course Outcomes (CO):

CO	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to:	
1	Explain the types & approaches of research and significance of formulating research questions, objectives and hypotheses. Explain the significance of formulating research questions, objectives and hypotheses & analyze factors affecting the research topic in research.	Ap
2	Explain methods and tools of data collection& describe the method of representation of raw data with its advantages.	An

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

73| Page

Online

Prof. P. K. Behera K. Shrivas. (External

Prof. Kallol K. (member)

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna (member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt

Shri H. Deshmukh (Member)

Shri B. L. (Member) Dr. Indrapal Karbhal

CO-PO/PSO Mapping for the course:

PO		POs												PSO					
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5			
CO1	3	3	3	3	2	2	3	2	2	2	3	3	2	2	3	3			
CO2	3	3	3	3	2	2	2	2	3	3	3	3	3	3	3	3			

[&]quot;3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation

DETAILED SYLLABUS

Unit	Topics	No. of	CO
No.		Lectures	No.
I	Research Methodology for Environmental Science	15	1
	Introduction to Research Methodology for Environmental		
	Science, Objectives of Research, Types of Research,		
	Research Approaches, Research Methods, Validity and		
	Reliability of Research, Use of Statistics in Research,		
	Defining the Research Problem, Factors affecting the		
	Selection of the Topic, Selection of Topics and Formulating		
	Research Questions, Criteria for Evaluating Research		
	Questions, Conceptualizing a Topic, Factors affecting the		
	Selection of Topics, Formulation of Objectives and		
	Hypothesis, Research Design, Principles of Research		
	Design, Types of Research Designs, Developing a Research		
	Plan- Exploration, Description, Diagnosis and		
	Experimentation.		
II	Data Collection and Data Management	15	2
	Collection of Data, Primary & Secondary Data Collection		
	Methods, Introduction to Data management, Frequency		
	Distribution, Tabulation of Data, Diagrammatic		
	Representation of Data, Bar Diagrams, Pie Diagram or Pie		
	Chart, Pie Diagram or Pie Chart, Pictograms or Pictorial		
	Diagrams, Statistical Maps or Cartograms, Graphical		
	Presentation of Statistical Data, Statistical Analysis of Data.		

Books & References

- 1. Dulal, H., Shah, K., Sapkota, C.
- 2. , Uma, G., & Kandel, B. (2013). Renewable energy diffusion in Asia: Can it happen without government support?. Energy Policy, 59, 301-311. doi: 10.1016/j.enpol.2013.03.040
- 3. Begum K.J. and Ahmed A. (2015). The Importance of Statistical Tools in Research Work. International Journal of Scientific and Innovative Mathematical Research. Volume 3, Issue 12, December 2015, PP 50-58
- 4. Ford E.D. (2000). Scientific Method for Ecological Research. Cambridge University Press. 560pp.
- 5. Bhatta, B. (2015) Remote Sensing and GIS, Second Ed., Oxford University Press, New Delhi, 716p.
- 6. Campbell, J.B. (2002) Introduction to Remote Sensing, Third Ed., Guilford Publications, New York, 620p.

74| Page

Qualine Qualine

Kamlesh

Chairman

Prof. P. K.

Behera

(External

member

Prof. Kallol K.

Prof. Kallol K. Ghosh (member) Prof. M. K.

Prof. Shamsh Pervez (Member)

Dr. Kar dubey Dr. Bhanushrre

Dr. Ajita D (Member) Shri H. Deshmukh Shri B. L.

Yadaw

omme

- 7. Grosof, M. S. and Sardy, H. (1985). A research primer for the social and behavioural sciences. Orlando: FL: Academic Press.
- 8. Aldridge, A. and Levine, K. (2001). Surveying the Social World Principles and Practice in Survey Research. Open University Press: Buckingham. Bryman, A. (2008).
- 9. Social Research Methods. 3rd Edition, Oxford University Press., New York. Cohen, L., Manion, L., and Morrison, K. (2007). Research Methods in Education. Routledge: London and New York

75| Page

V. Sharing Anline

Kamlesh. K. Shrivas,

Chairman

Prof. P. K. Behera (External

member

Prof. Kallol K. Ghosh (member)

Prof. M. K. (Member)

Prof. Shamsh Pervez (Member)

Dr. Karuna

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H.

Shri B. L. Deshmukh Yadaw

Dr. Indrapal

Karbhal

(Member)

Online

M.Sc. (Environmental Science) SEMESTER-III

Program	Subject	Year		Semester			
M.Sc.	Environmental Science	II		III			
Course Code	Course Title Course Type						
ENV502	Environment		Value added				
Credit	H	-T-P)					
	L	Т		Р			
2	2	-		-			
Maximum Marks	CIA ESE						
100	25		75				

Learning Objective (LO):

The course aims to equip students with a deep understanding of advanced concepts, particularly in groups and field theory, and research empower them to apply this knowledge to solve environmental problems and engage with higher-level research.

Course Outcome (CO):

СО	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to :	
1	Introducing Toxicology and its History, disciplines and importance of toxicology	Ap
	Study of Translocation of Toxicity, Absorption, Distribution and Excretion of toxic substances	Ap

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; A- Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

		: <u> </u>																
PO		POs											PSO					
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5		
CO1	3	3	3	2	1	2	3	1	3	2	1	3	1	3	3	2		
CO2	3	3	3	1	1	1	3	2	1	2	3	3	2	3	3	3		

"3" - Strong; "2" - Moderate; "1"- Low; "-" No Correlation

76| Page

Q'mline

Kamlesh

Prof. P. K. Behera (External

Prof. Kallol K. Ghosh

(Member)

Shri H.

Deshmukh

Online

Yadaw

Dr. Anand Indrapal Kamavisdar (Member Karbhal (Member) from DST)

DETAILED SYLLABUS

Unit	Topics	No. of	CO
No.		Lectures	No.
1	Introducing Toxicology:	15	1
	History, disciplines and importance of toxicology, Potency and		
	Toxicity, Acute toxicity, chronic toxicity), Hazards, Risks,		
	Benefit-to-risk-ratio, tolerance limits, Acceptable daily intake,		
	Threshold value. Factors affecting toxicity: interaction between		
	chemicals (synergistic, additive and antagonistic). Dose, Effect		
	and response, Dose-response curves, & Dose effect		
	relationships		
2	Translocation of Toxicity:	15	2
	Absorption, Distribution and Excretion of toxic substances.		
	Absorption: membrane permeability, mechanism of chemical		
	transfer (passive transport, active transport, facilitated		
	transport), absorption (Gastrointestinal, skin, lungs).		
	Distribution: tissue affecting distributions and tissues retention.		
	Excretion: Renal excretion, Biliary excretion and		
	Gastrointestinal. Receptor Concept, Nature of receptors, Theory		
	of toxicant receptor interaction, Mechanism of action of some		
	Pesticides (organochlorine, carbamate and organophosphate)		
	and heavy metals (lead, arsenic, mercury, cadmium and		
	chromium)		

Book Reference

- 1. Singh M. P. and Tewari D.N., Agro-forestry and Waste Land, Anmol Publication, 1996 Page 38 of 52
- 2. Dwivedi A.P., Agro-forestry Principles and Practices Oxford and IHB, 1992 Suggested
- 3. Gadgil, M. and Guha, R., The use and abuse of Nature, Oxford University Press, 2002.
- 4. Singh, P.et al (eds.), Agro-forestry Systems for Sustainable Land Use, Science Publisher, 2000.
- 5. Wojtkowski, P. A., Theory and Practices of Agro-forestry Design, Science Publisher,
- 6. Wojtkowski, P.A., Agrocological Perspectives in Agronomy, Forestry and Agro-forestry, Science Publisher, 2004.

77| Page

V. Share

Kamlesh

K. Shrivas,

Chairman

Prof. P. K.

Behera

(External

member

Prof. Kallol K. Ghosh

Prof. M. K. (member) (Member)

Prof. Shamsh (Member)

Dr. Bhanushrre Gupta (Memebr)

Dr. Ajita Dixt (Member)

Shri H. Deshmukh

Shri B. L. Yadaw

Online

Indrapal

Karbhal

(Member)

M.Sc. (Environmental Science) Semester-I

Program	Subject	Year		Semester	
M.Sc.	Environmental Science	I		I	
Course Code	Course	e Title		Course Type	
ENV601	AGRO-FORESTI MANAG	Γ	Value added		
Credit	Н	ours Per Week (I	₋ -Т-Р)		
	L	Т		Р	
2	2	-		-	
Maximum Marks	CIA ESE				
100	25		75		

Learning Objective (LO):

The course aims to equip students with a deep understanding of advanced concepts, particularly in groups and field theory, and research empower them to apply this knowledge to solve environmental problems and engage with higher-level research.

Course Outcome (CO):

СО	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to :	
1	Ability to demonstrate understanding of the role and importance of forest and agroforestry in livelihood development	Ap
2	Ability to comprehend the species composition and its functional response with respect to the prevailing micro- and macro environmental conditions.	Ap

CL: Cognitive Levels (**R**-Remember; **U**-Understanding; **Ap**-Apply; **A-** Analyze; **E**-Evaluate; **C**-Create).

CO-PO/PSO Mapping for the course:

PO		Pos										PSO PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	2	1	2	3	1	3	2	1	3	1	3	3	2
CO2	3	3	3	1	1	1	3	2	1	2	3	3	2	3	3	3

[&]quot;3" – Strong; "2" – Moderate; "1"- Low; "-" No Correlation

78 | Page

V. Show Holos (Antin

Chairman

Prof. P. K. Prof. Behera Ghos (External (me

member

Prof. Kallol K. Prof. Ghosh Deb

Prof. M. K. Deb Prof. Shamsh Pervez (Member) Dr. Karuna

Dr. Bhanushrre Gupta Dr. Ajita Dixt (Member)

Dixt Shri H.

Shri B. L. Yadaw

Indrapal

Karbhal

(Member)

DETAILED SYLLABUS

Unit	Topics	No. of	СО
No.		Lectures	No.
I	Agroforestry and socioeconomic aspects.	15	1
2	Microclimate of forest ecosystem, tree physiology, growth, forestation for waste land recovery, deforestation and its impact on environment, agricultural, horticultural, silvicultural ecosystem.	15	2

Book Reference

- 7. Singh M. P. and Tewari D.N., Agro-forestry and Waste Land, Anmol Publication, 1996 Page 38 of 52
- 8. Dwivedi A.P., Agro-forestry Principles and Practices Oxford and IHB, 1992 Suggested readings
- 9. Gadgil, M. and Guha, R., The use and abuse of Nature, Oxford University Press, 2002.
- 10. Singh, P.et al (eds.), Agro-forestry Systems for Sustainable Land Use, Science Publisher,
- 11. Wojtkowski, P. A., Theory and Practices of Agro-forestry Design, Science Publisher, 2004.
- 12. Wojtkowski, P.A., Agrocological Perspectives in Agronomy, Forestry and Agro-forestry, Science Publisher, 2004.

79 | Page

V. Share

Kamlesh

K. Shrivas,

Chairman

Prof. P. K.

Behera

(External

member

Prof. Kallol K. Ghosh (member)

Prof. M. K. (Member)

Prof. Shamsh

(Member)

Dr. Bhanushrre

Dr. Ajita Dixt

(Member)

Shri H. Deshmukh Shri B. L. Yadaw

Online

Dr.

Indrapal

Karbhal

(Member)

Dr. Anand Kamavisdar from DST)

Online

M.Sc. (Environmental Science) Semester-III

Program	Subject	Year		Semester	
M.Sc.	Environmental Science	II		III	
Course Code	Course	e Title		Course Type	
ENV602	INDIAN KNOW		Value added		
Credit	Н				
	L	Т		Р	
2	2	-		-	
Maximum Marks	CIA	ESE			
100	25	25 75			

Learning Objective (LO):

The course aims to equip students with a deep understanding of advanced concepts, particularly in groups and field theory, and research empower them to apply this knowledge to solve environmental problems and engage with higher-level research.

Course Outcome (CO):

СО	Expected Course Outcomes	CL
No.		
	At the end of the course, the students will be able to :	
1	Ability to demonstrate understanding the Origin of Environmental Science from Vedas.	Ap
2	Ability to demonstrate understanding the Sacred Ecology, Environment & Water Management in India.	Ap

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; A- Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

PO		POs											PSO PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	2	1	2	3	1	3	2	1	3	1	3	3	2
CO2	3	3	3	1	1	1	3	2	1	2	3	3	2	3	3	3

"3" - Strong; "2" - Moderate; "1"- Low; "-" No Correlation

80| Page

Prof. Kallol K.

DETAILED SYLLABUS

Unit	Topics	No. of	СО
No.		Lectures	No.
I	Vedic Approach to Environment, Concept of The Earth 'Prithvi', Concept of Water 'Apah', Concept of Air 'Vayu', Concept of Ether 'Akasha', Concept of Mind 'Manas', Animals and Birds, Plants and Herbs 'Oshadhi', Concept of Sacrifice 'Yajna', Co-ordination Between All Natural Powers,	15	1
2	Sacred Forest, Sacred Groves, Rainwater Harvesting System: Vav, Kund, Talavetc, Sacred Hills and Mountains, Forest Management, Urban Planning Agroforestry, Harappan and Traditional Water Management System and Communities Involved in Water Management	15	2

Book Reference

- 1. S.R.N. Murthy, *Vedic View of the Earth*, O.K. Printworld, New Delhi, 1997, p.12.
- 2. A.R. Panchamukhi, Socio-economic Ideas in Ancient Indian Literature, Rashtriya Sanskrit Sansthan, Delhi, 1998, p.467.
- 3. N.M. Kansara, Agriculture and Animal Husbandry in the Vedas, Nag Publishers Delhi, 1995, pp. 126-138.

81 | Page

V. Shanding Online

